Enriched Event Streams: A General Dataset For Empirical
Studies On In-IDE Activities Of Software Developers

Sebastian Proksch Sven Amann Sarah Nadi
University of Zurich Technische Universitiat Darmstadt University of Alberta
proksch@ifi.uzh.ch amann@cs.tu-darmstadt.de nadi@ualberta.ca
ABSTRACT about the usage of IDE tools, such as automated refactorings, but

Developers have been the subject of many empirical studies over the
years. To assist developers in their everyday work, an understanding
of their activities is necessary, especially how they develop source
code. Unfortunately, conducting such studies is very expensive and
researchers often resort to studying artifacts after the fact. To pave
the road for future empirical studies on developer activities, we
built FEEDBAG, a general-purpose interaction tracker for Visuar
Stupio that monitors development activities. The observations are
stored in enriched event streams that encode a holistic picture of
the in-IDE development process. Enriched event streams capture all
commands invoked in the IDE with additional context information,
such as the test being run or the accompanying fine-grained code
edits. We used FEEDBAG to collect enriched event streams from 81
developers. Over 1,527 days, we collected more than 11M events
that correspond to 15K hours of working time.

ACM Reference Format:

Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event
Streams: A General Dataset For Empirical Studies On In-IDE Activities Of
Software Developers. In Proceedings of International Conference on Mining
Software Repositories, Gothenburg, Sweden, May 2018 (MSR’18), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Understanding how developers produce software is essential for
creating tools that can support them in their daily tasks. This in-
cludes understanding, for example, how they change code, when
they invoke builds or run test suites, and when such invocations
lead to more code changes. Over the last couple of decades, many
researchers have built tools and conducted studies to understand
developers’ actions and needs [1-3, 7, 10]. Typically speaking, they
either studied developers in retrospective through mining software
repositories or in vivo by observing the commands or actions they
execute in an Integrated Development Environments (IDEs). Using
either of these information sources alone provides different views
on development activities. Analyzing code evolution in the version-
control system, on the one hand, provides a view on potentially
stable code snapshots, but usually misses more fine-grained changes.
Analyzing in-IDE activities, on the other hand, may provide insights

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR’18, May 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

often misses the evolution of the source code itself. Ideally, we
want to combine and link both these perspectives. To capture such
a holistic picture of developers’ activities, we designed enriched
event streams [6], a novel meta model for in-IDE development ac-
tivities that captures not only all executed commands in the IDE,
but also additional context information about them. Enriched event
streams can help, for example, in answering the following research
questions:

e Which commands do developers use?

e How are test cases executed?

e Does refactoring lead to more failed tests?

e How do developers navigate the code base?

o Are there common patterns in debugging behavior?
e What kind of changes do developers revert?

While previous work may have tackled similar questions, we are
still lacking large public datasets and holistic representations that
are not tailored to a specific research question. We hope that we can
facilitate future research in this area by providing a general dataset
that provides ample opportunity to study developer activities.

2 DATASET

Our “March 1, 2017” release contains 11M events that have been
uploaded by a diverse group of 81 developers.! Out of these develop-
ers, 43 come from industry, three are researchers, five are students,
and six are hobby programmers. Twenty-four participants did not
provide this (optional) information about their position. The data
covers a total of 1,527 aggregated days and was collected over
eleven months, but not all developers participated the whole time.
On average, each developer provided 136K events (median 54K)
that have been collected over 10 days (median 18.9 days) and that
represent 185 hours of active work (median 48 hours). In total, the
dataset aggregates 15K hours of development work.

In our own work, we were most interested in the usage of code
completion, test execution, and source-code evolution, for which
we have provided the most advanced instrumentation. The dataset
contains detailed data about 200K usages of the code completion,
including a snapshot of the surrounding source code, as well as
3.6K test executions. An average user provides 2.5K usages of the
code completion (median 640) and 44 test executions.

The dataset is available on our project page [4] and can be down-
loaded for local processing. We provide an API for both Java and C#
that allows reading the data and we have created examples in both
languages that help to get started. Technically, the dataset stores a
Javascript Object Notation (JSON) representation of our collected

IDevelopers that have contributed less than 2,500 events are already filtered out.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MSR’18, May 2018, Gothenburg, Sweden

events and can also be read and processed in other languages. The
appendix contains a more elaborated description of the meta model.

3 APPENDIX

In this appendix, we elaborate more on the context of the project
and on the concrete data. We start by providing a more detailed
explanation of the data format, then present our interaction tracker
FEEDBAG and the setup of our field study, in which we have gathered
the dataset from our users. Finally, we present details on the data
organization and on possible resources to get started.

3.1 Data Format

Developers work in their IDE on various tasks and with many tools.
In order to analyze their actions after the fact, it is necessary to
store them in a form that can be serialized and shared. The typical
way to store interactions is to model them as a stream of events
(e.g., click-through data in the web or system log in applications),
but these representations are usually “flat,” in the sense that they
do not provide any details about the event that occurred. If it is
possible at all, researchers have to reconstruct the context of the
interaction by analyzing the stream.

To improve over this situation, we have introduced a new meta
model for in-IDE developer activities that we call enriched event
streams. The representation is event-based and captures additional
context information to facilitate later analyses of developers’ activ-
ities.

Our conceptual design of the data structure is shown in Figure 1
and can be divided into two layers. The first layer represents the
process through a hierarchy of IDEEvents that denote the different
kinds of interactions. Each event has a second layer in which addi-
tional context information about a captured interaction is stored.
The basic information that is universally (e.g., timing) used is stored
as generic context information in the base class. In addition, each
derived event class can capture specialized context (e.g., test results
or code snapshots). Both the generic and a specialized context is
available for each event. A third layer that is not depicted is a nam-
ing scheme for both IDE components (e.g., identifiers of windows or
file names) and code elements (e.g., types or methods) that allows
to unambiguously refer to locations, targets, or code elements [6].

Example. The design is illustrated in a simplified example of an
enriched event stream in Figure 2 that shows the conceptual split
into the two levels: process and context. For the example, assume
that a developer is writing source code in a file, saves the file, and
then commits it to the repository.

On the process level, we capture single events in a stream. Each
event has an event type. The types that are relevant for our example
are source code change, file save, and versioning action. Other events
might happen in between (e.g., window close), which we omit here
for brevity. The events build a stream that allows following the
different activities of the developer after the fact.

On the context level, we allow the storage of additional informa-
tion, to support the in-depth investigation of development activities.
The context information includes generic information (e.g., the time
at which the events were triggered), but also additional context that
is specific to the individual event types. For example, the edit event
contains a snapshot of the current file under edit, which allows

Sebastian Proksch, Sven Amann, and Sarah Nadi

Process IDEEvent
«Abstract»
% «extends» | |
«references» | EventX | | EventY |
Context Generic Context | [ContextX | [Contexty |

Timing, Location,
Trigger, Session,
Version

Figure 1: Conceptual Design of Enriched Events

Change Save Versioning
Event Event Event Process
Event Stream
(Activities
over time)
Context

Filename Action

Source Code (SST)

Figure 2: Simplified Example of an Enriched Event Stream

an analysis of the edited source code after the fact. The save event
stores the name of the file that was saved and the way in which the
save action was invoked (e.g., by shortcut or by clicking a menu
entry). The version-control event indicates the name of the current
solution and the version control action, i.e., that changes have been
committed. All these events also contain other information that we
omit for brevity in this illustration.

One example of extended context information is the code snap-
shots that edit events capture. We go beyond simple plain-text
snapshot and capture a simplified version of the abstract syntax
tree. These Simplified Syntax Trees [5, 9] combine two main ideas:

(1) Resolved typing information is preserved by storing refer-
ences to types and type members in a fully-qualified naming
scheme. For example, every method reference contains infor-
mation about the declaring type (incl. the declaring assembly)
and also about its full signature (i.e., the list of parameters
and the return type). We also preserve information about
the inheritance hierarchy of the edited type.

The actual syntax tree is being normalized to facilitate static
analyses by reducing the maximum depth of the tree. Nested
expressions other than literals or references are being as-
signed to artificial variables and replaced with a respective
reference.

—
DN
~

3.2 Supported Activities

Our meta model supports a wide range of development activities.
A complete categorization is presented in Figure 3. We now discuss
the individual categories.

Activity. At the core, we are interested to model “what the de-
veloper is doing,” which includes all tools and commands that get
executed. Unsupported by the traditional system log, some “non-
activities” do not leave a trace, because they either do not correlate

Enriched Event Streams: A General Dataset For Empirical Studies On In-IDE Activities

to a development activity (e.g., scrolling) or because they do not
involve user interaction at all (e.g., screen saver started). To im-
prove over the traditional system log, we capture the following
activity-related events to distinguish these cases.

Commands Invocation of an action. For example, clicking a
menu button or invoking a command via shortcut.

(In-) Activity Interactions do not necessarily imply an execu-
tion of a command. We store the basic information that a
developer has interacted with the computer in any way in
order to allow the inference of real inactivities.

System Event Non-IDE events that indicate an inactivity of
the developer, e.g., system sleep or screen lock.

Focus We store whether the IDE had the window focus.

File Management. Working on software naturally includes edit-
ing source code files and organizing them into folders and workspaces
(i-e., solutions in VISUAL STUDIO terminology). We include the fol-
lowing events to model these activities.

Solutions Interactions that relate to changes of the solutions,
e.g., adding or removing of projects or files.

Edits We preserve the information that a developer has edited
a source file. After every change, we create an edit event that
includes a source-code snapshot in the form of an SST.

Environment. To complete the picture of general IDE usage, we
capture information about IDE sessions and about the environ-
ment in which the developer is working. More specifically, we pre-
serve information about the state of the IDE (e.g., when it is being
(re)started) and the configuration of the local working environment
(e.g., moving or closing windows). We capture:

IDE State Explicit marker of start and shutdown of the IDE.

Windows Captures how developers place their windows and
how they interact with them.

Documents Open, close, and switch of documents.

Navigation. Research distinguishes two kinds of navigation: un-
structured browsing (e.g., when a developer does not know what
to look for and tries to find it by navigating to related documents
that are semantically linked) or directed searching (e.g., when a
developer knows what to look for, but not where). We designed
enriched event streams to capture enough information to enable
reasoning about both kinds.

Structural Navigation We capture navigation that follows
the structure of the type system. We store both the naviga-
tion within a document (e.g., moving the cursor to another
method) as well as “ctrl-click navigation” to referenced files.

Search Tool Our event stream preserves invocations of a search
tool. It is possible to distinguishing actual use of search re-
sults from aborting the search.

Specific Tools. Software development is a combination of various
activities. One of the strengths of enriched event streams is that
they do not stop at the general level, but that they are extensible to
very low-level details. We added support for the following essential
tools that are at the core of software engineering activities. We
capture their detailed information in enriched event streams.

MSR’18, May 2018, Gothenburg, Sweden

Figure 3: Categories of Supported Development Activities

Build In VisuaLSTuDIO, building is an activity that has to be
triggered regularly by the developer. We model build actions,
targets, and results.

Debugger Debugging programs is one of the most common
development activities, and we preserve all the information
about the process.

Testing We model test executions and their results.

Version Control We capture the version-control activities of
developers, which could be used in studies on source-code
evolution, e.g., to infer the maturity of edited source files.

Code Completion Code completion is a widely used core fea-
ture of modern IDEs. We capture information about its invo-
cation, the selection of proposals, and the context in which
it is triggered.

We also request a simple user profile from our participants to
get demographic information about our user base, which is also
modeled as an event. You will find a more detailed description of
all supported events on the website of the project [4].

3.3 Interaction Tracking

To capture developer activities, we built FEEDBAG, a general-purpose
interaction tracker for VisuaL Stupio that captures developers’ in-
teractions with their IDE. FEEDBAG is publicly available and can be
installed as a plugin for RESHARPER. The tool represents a general
solution for capturing interaction data and is designed to cater for
different use cases. It can be deployed in controlled experiments in
a minimalistic release that just contains the instrumentation, but
we also provide extensions for other settings (e.g., field studies),
in which extensive infrastructure is required. This includes, for
example, infrastructure for reviewing and sharing collected data.
We have designed FEEDBAG to be as non-invasive as possible.
Once installed, it runs transparently in the background and captures

MSR’18, May 2018, Gothenburg, Sweden

all performed in-IDE actions in an enriched event stream. It does
not provide any value to the developer to avoid any potential bias
in the collected dataset.

3.4 Field Study

We have conducted a field study to collect data from a large num-
ber of participants. The nature of FEEDBAG made it hard to find
participants for our field study, because no incentives exist apart
from being a part of bleeding edge research.

To find our participants, we advertised the field study directly in
social media channels and through advertising efforts (e.g., MSR
year book), and indirectly through referring to the project in our
papers. Our invitation to use FEEDBAG and to participate in the
data collection was open to any interested developer, which means
we did not target a specific population of users. However, our as-
sumption is that a high number of random participants and long
observation times provide a rich dataset with a variety of projects
and participant backgrounds.

To make installation as easy as possible, we released the tool in
the RESHARPER gallery [8], the standard repository for public RE-
SHARPER extensions. The extension can be installed by all interested
developers directly from within their IDE using the RESHARPER
extension manager. Over the course of the project, it was neces-
sary to update the tool several times to adapt to breaking changes
introduced by updates to the RESHARPER SDK. Since its original
release, FEEDBAG has been downloaded more than 1,200 times and
is regularly listed among the “Top 100” RESHARPER extensions.

3.5 Data Organization

The uploaded data of the participants is very unstructured and the
individual contributions of a single participant are scattered across
several files. We performed a preprocessing step before releasing
the dataset in which all events uploaded by the same user were
merged, sorted chronologically, and filtered for obvious noise, such
as duplicated events. After the preprocessing, the data is much
easier to process, e.g., all events that were shared by an individual
developer are contained in a single file.

Sebastian Proksch, Sven Amann, and Sarah Nadi

We encouraged users to use the same identifier across machines
to allow us to group activities of the same user. As a result, active
phases recorded on multiple concurrent IDE instances may overlap
in the event stream. Depending on the research questions, it might
be necessary to split these phases by programming sessions. This
split can be achieved using the session id that is stored in each event.

The events are stored in plain text files that correspond to the
Javascript Object Notation (JSON) of the event data structures that
we have introduced above. All events of the same users are com-
pressed in an archive, and all archives are again combined in a
single file for easier distribution. The dataset can directly be opened
and processed with the tooling that we provide for Java and C#. The
challenge website [4] provides examples that illustrate the required
steps to read and use the interaction dataset.

REFERENCES

[1] Philip M. Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton
Moore, Jitender Miglani, Shenyan Zhen, and William E. J. Doane. 2003. Beyond
the Personal Software Process: Metrics Collection and Analysis for the Differently

Disciplined. In International Conference on Software Engineering. IEEE.
[2] Mik Kersten and Gail C. Murphy. 2005. Mylar: A Degree-of-interest Model for

IDEs. In International Conference on Aspect-oriented Software Development.

[3] Roberto Minelli, Andrea Mocci, Romain Robbes, and Michele Lanza. 2016. Tam-
ing the IDE with Fine-grained Interaction Data. In International Conference on
Program Comprehension.

[4] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2017. Website of the MSR
Challenge Proposal. http://www.kave.cc/msr-mining-challenge. (2017).

[5] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. 2016. A Dataset
of Simplified Syntax Trees for C#. In International Conference on Mining Software
Repositories. ACM.

[6] Sebastian Proksch, Sarah Nadi, Sven Amann, and Mira Mezini. 2017. Enriching In-
IDE Process Information with Fine-grained Source Code History. In International
Conference on Software Analysis, Evolution, and Reengineering.

[7] Will Snipes, Anil R Nair, and Emerson Murphy-Hill. 2014. Experiences Gamify-
ing Developer Adoption of Practices and Tools. In International Conference on
Software Engineering.

[8] KaVE Team. 2017. Release of the FeedBaG Interaction Tracker. https:/
resharper-plugins.jetbrains.com/packages/KaVE.Project/. (2017).

[9] KaVE Team. 2017. Website of the KaVE Project. http://www.kave.cc/. (2017).

[10] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P
Bailey, and Ralph E Johnson. 2012. Use, Disuse, and Misuse of Automated
Refactorings. In International Conference on Software Engineering. IEEE.

http://www.kave.cc/msr-mining-challenge
https://resharper-plugins.jetbrains.com/packages/KaVE.Project/
https://resharper-plugins.jetbrains.com/packages/KaVE.Project/

	Abstract
	1 Introduction
	2 Dataset
	3 Appendix
	3.1 Data Format
	3.2 Supported Activities
	3.3 Interaction Tracking
	3.4 Field Study
	3.5 Data Organization

	References

