
1 Root Causes of MD’s False Positives and False Negatives

For reasons of space, in the paper, we present only the most-prevalent root causes of
MD’s false positives (Experiment P) and false negatives (Experiment RUB).

1.1 Experiment P

The following is the full list of the root causes of all MD’s false positives in Experiment P.
FP1: Uncommon Usages. 84 (73.7%) of the false positives are uncommon-but-correct
usages, i.e., they are instances of a usage pattern, which, however, is not mined due to
low frequency of its occurrences. These usages are flagged as violations, because they
deviate from the patterns that MD learned.

In nine cases, e.g., a loop calls Iterator.hasNext() again after calling next(), to check
whether there will be a subsequent iteration. MD reports a missing call to next() after this
second call to hasNext(). This illustrates two problems: (1) the heuristic for identifying
pure methods by looking for methods with the prefix get misses cases such as this hasNext()

call. (2) MD does not consider alternative non-frequent patterns. A future solution might
be a probabilistic model of API usage that considers the likelihood of different usages
and reports no violation if one usage is only slightly more likely than another, or if an
API’s usages generally vary a lot.

Almost as prevalent (seven violations) is a scenario where the pattern (ps = 10) expects
the primitive value of a PDFObject to be retrieved using the floatValue() method, while
the usage calls the intValue() method. Both usages are valid alternatives, but the latter
has only a support of seven in the project, which is why MD does not learn a respective
pattern.

Another reoccurring scenario (five violations) again uses an Iterator, checking for the
presence of sufficient elements by either size() or isEmpty() on the underlying collec-
tion, instead of the expected hasNext() method. Again, these alternative usages occur
infrequently for MD to learn a respective pattern.
FP2: Intra-procedural Analysis. 18 (15.8%) of the false positives are due to our
intra-procedural analysis. In seven cases, MD reports missing usage elements that occur
in transitively called methods. Using an inter-procedural analysis, e.g., to filter such false
positives as proposed by Li and Zhou [1], might help to mitigate this problem. Future
work should investigate whether the additional computational cost pays off.
FP3: Dependent States. Five (4.4%) of the false positives are due to implicit
dependencies. In three case, for example, the code ensures that two collections have the
same size and then iterates over one, while checking the size of the other. This usage is
safe, but MD does not capture such implicit dependencies between object states. This
problem was also discussed in previous work [2] as the least prevalent cause for false
positives. Since it is very difficult, if not impossible, to capture inter-dependencies of
object states using static analysis, we did not address this problem with MD.
FP4: Mapping Choice. Another five (4.4%) of the false positives are due to MD’s
detection algorithm choosing a non-optimal mapping between a pattern and a target. In
these cases, the target is actually an instance of the pattern, but MD does not recognize
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this, due to the greedy extension strategy we introduced to scale the detection. We
consider this a reasonably small cost, considering that we could not perform an exhaustive
search on many projects in our experimental environment.
FP5: Cross-method Usages. One false positive (0.9%) is a cross-method usage,
which our filtering misses, because the respective object is initialized as a local variable
and only later assigned to a field.
FP6: Combined Patterns. The last false positive (0.9%) is a case where a violation
is an instance of a combination of two alternative patterns, which our alternative-pattern
filtering cannot detect.

1.2 Experiment RUB

The following is the full list of the root causes of all MD’s false negatives in Experi-
ment RUB.
FN1: Representation. In 15 cases, an illegal parameter value (constant or literal)
is passed as a call parameter. MD cannot detect this, because AUGs do not capture
concrete values.
FN2: Self-Usages. Eight cases are due to our removal of self-usages to counteract
their potential to cause false positives. In three cases, the misuses contain method calls
on the API being implemented and in another three cases, the misuses contain calls
on fields. When creating AUGs, we explicitly disregard both these scenarios to avoid
false positives caused by partial usages. This strategy successfully reduced the impact
of partial usages in Experiment P. However, these eight false negatives show that we
traded precision for recall. By capturing inter-procedural usages, we might make filtering
self usages and usages on fields unnecessary and enable us to identify misuses in them.
The Chronicler [3] detector mines usages from an inter-procedural call graph, which
might mitigate the problem. However, it is unclear how to adapt this approach from
considering only method calls to all usage elements we encode in AUGs. Furthermore,
such an approach duplicates evidence, if methods are called multiple times, which might
bias the mining.
FN3: Matching. In seven cases, MD cannot match the respective pattern and the
target usages, because they contain only a single, distinct call each, because the respective
API favors the use of one method over the use of another, e.g., due to deprecation. Our
detection algorithm expects usages to consist of at least two usage elements and, by
design, does not match AUGs that have no method call in common. None of the other
other detectors can identify these misuses either.
FN4: Redundant. Seven cases are misuses where the usage has a redundant element
that should be removed. Since all detectors are designed to detect missing elements, none
can detect these misuses. It is worth noting that DroidAssist [4] uses a probabilistic
approach that might find superfluous method call, but the technique has never been
evaluated.
FN5: Pure Methods. In six cases, our mining excludes elements from the pattern
when heuristically determining semantically irrelevant nodes (calls to getter methods in
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all cases). The remaining pattern can no longer be matched to the usage.
FN6: Multiplicity. In one case, our mining excludes subsequent calls to the same
method due to our heuristic of addressing call multiplicities. The remaining pattern no
longer shows the difference between the misuse and the correct usage.
FN7: Analysis. In one case, our analysis misses data-flow relations, because it assumes
single static assignment. In the correct usage if (v == null) { v = ... } v.m(), which
ensures the initialization of v before its use, it regards v before and after the assignment
as two different objects. Therefore, our pattern mining sees no data flow between the null

check and the subsequent usage and excludes the check from the pattern. Consequently,
MD cannot identify the missing check in the respective misuse.
FN8: Operator Abstraction. In one case, the misuse is an accidentally inverted
condition, which we miss because we abstract from concrete operators in representing
conditions.
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