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Abstract
Code completion is an integral part of modern Integrated Development Environments (IDEs). Developers
often use it to explore Application Programming Interfaces (APIs). It is also useful to reduce the required
amount of typing and to help avoid typos. Traditional code completion systems propose all type-correct
methods to the developer. Such a list is often very long with many irrelevant items. More intelligent code
completion systems have been proposed in prior work to reduce the list of proposed methods to relevant
items.

This work extends one of these existing approaches, the Best Matching Neighbor (BMN) algorithm. We
introduce Bayesian networks as an alternative underlying model, use additional context information for
more precise recommendations, and apply clustering techniques to improve model sizes. We compare our
new approach, Pattern-based Bayesian Networks (PBN), to the existing BMN algorithm. We extend previ-
ously used evaluation methodologies and, in addition to prediction quality, we also evaluate model size and
inference speed.

Our results show that the additional context information we collect improves prediction quality, especially
for queries that do not contain method calls. We also show that PBN can obtain comparable prediction
quality to BMN, while model size and inference speed scale better with large input sizes.
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1. INTRODUCTION
Code completion systems are an integral part of modern Integrated Development Envi-
ronments (IDEs). They reduce the amount of typing required, thus accelerating coding,
and are often used by developers as a quick reference for the Application Programming
Interface (API), because they show which fields and methods can be used in a certain
context. Typically, the context is determined by the static type of the variable on which
the developer triggers the completion. However, using the static type of the variable
as the only criteria for determining the developers’s context, may produce spurious
recommendations, thus diminishing the effectiveness of the completion system [Bruch
et al. 2009]: Showing the developer hundreds of recommendations (e.g., the type Text
in the SWT framework of Eclipse1 lists 168 methods and field declarations) may be
as ineffective as showing none. Many IDEs support prefix filtering to reduce the num-
ber of irrelevant recommendations. If completion is triggered on a prefix (e.g., toS|),
then only proposals that start with that prefix (e.g., toString) will be shown. This ef-
fectively assists developers that know what they are looking for but, is of little help for
developers that are unfamiliar with the API.

Intelligent code completions better target the needs of developers that are unfamiliar
with an API. The FrUiT tool [Bruch et al. 2006] and its successor using the Best-
Matching Neighbor (BMN) algorithm [Bruch et al. 2009], which resulted in Eclipse
Code Recommenders2, are examples of intelligent code completion systems. They use
code repositories containing clients of an API to build a knowledge base that contains
common usages for different types of that API. On a completion event, the models
learned from the repositories are used to show relevant proposals. Besides the static
type of the variable on which code completion is triggered, these systems also consider
some structural context of the code being developed to select the models from which
to extract the recommendations. The method within which the completion system was
triggered is an example of such a structural context.

The usefulness of considering some form of structural context is illustrated in Fig-
ure 1. Here, the developer triggers code completion on the variable text. Like a stan-
dard code completion, an intelligent code completion system can determine that the
static type of the variable is Text. But, additionally it can consider the following struc-
tural context features: (a) it was triggered inside the method createDialogArea, an
overridden method originally declared in the type Dialog, and (b) the variable was as-
signed the result of the call to the constructor of Text. By considering typical usages, an
intelligent code completion system may infer that the text widget is being initialized
in the current situation, as indicated by both the enclosing method and the constructor
call. Therefore, it proposes method calls known to appear in such contexts frequently,
e.g., setText or addListener. Method calls that are unlikely in the given context (e.g.,
getText) appear at the end of completion proposals or are omitted altogether.

Bruch et al. [Bruch et al. 2009] show that by applying the Best-Matching Neighbor
algorithm and some context information to filter relevant usage patterns, intelligent
code completions clearly outperform standard code completion systems with regard to
prediction quality. Two metrics are used for judging prediction quality: precision and
recall, which both need to be maximized. High precision means that a high percentage
of proposals are relevant; high recall means that as few relevant proposals are missing
in the recommended list as possible. Also, relevant method calls must be proposed
before any irrelevant completions.

1http://www.eclipse.org/swt/
2http://www.eclipse.org/recommenders/
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class MyDialog extends Dialog {
private Text text ;
@Override
void createDialogArea ( Composite parent ) {

text = new Text ( parent ) ;
text .

}
}

Cursor position, i.e., code
completion invoked here

Identifier Type Definition Call Site Kind
parent Composite Parameter Text.<init>(Composite) Parameter
text Text New Text.<init>(Composite) Receiver

Fig. 1: Example of a Code Completion and Extracted Information

However, the work presented in [Bruch et al. 2009] represents only a first and partial
step in investigating the design space of intelligent code completions. First, it lacks a
comprehensive analysis of the kind of context to be considered and its effect on predic-
tion quality. The structural context information used by this approach consists of the
type of the receiver object, the set of already performed calls on the receiver, and the
enclosing method definition. The effect of using additional context information (e.g.,
the enclosing class of the object, methods to which it was passed as an actual parame-
ter, or information about its definition) on prediction quality is not considered. Second,
the approach does not at all investigate two further important quality dimensions that
need to be considered for code completion engines to effectively support developers: in-
ference speed and model size.

First, it is of paramount importance that predictions are computed quickly, in order
not to disturb the workflow of the developer. Based on prior research that analyzed
the impact of user interface delays on users [Nielsen 1994], we derive two timing con-
straints: (1) a code completion should provide information in less than 100 milliseconds
to avoid any noticeable delay in the workflow of the developer, (2) it must answer in less
than a second because the current thought of the developer is interrupted, otherwise.
Given these constraints, it is infeasible to search for typical usages in large code repos-
itories on the fly; typical usages must rather be extracted beforehand and provided
in a model that allows efficient inference of potential completions. These models are
provided for arbitrary framework types and are typically distributed over a network.

Second, we also need to take the model size into account, when evaluating an in-
telligent code completion system. It is preferable to have smaller models. As already
mentioned, the models are usually distributed over a network and the distribution
of small models is easier. Further, the models need to be loaded into the IDE of the
developer and model size effectively affects the number of models that can be loaded
simultaneously and the time necessary to read and deserialize them from the hard
drive.

The three quality dimensions - prediction quality, prediction speed, and model sizes
- are not orthogonal and the mutual effect they have on each other must be considered.
The hypothesis is that prediction quality is increased by considering more features
of the structural context. However, this will presumably increase the model size and
negatively affect prediction speed. We need code completion engines that provide a
good tradeoff between these quality dimensions or are even configurable along them.

This paper contributes towards tackling these problems. We will extract and use
more context information than originally proposed and will show that this indeed im-
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proves prediction quality by up to 3% at the cost of significantly increased model sizes
by factor 2 and more. We propose Pattern-based Bayesian Networks (PBN) to tackle the
issue of significantly increased model sizes, a new technique to infer intelligent code
completions that enables to reduce model sizes via clustering.

Like BMN, PBN learns typical usage patterns of frameworks from data, which is
extracted by statically analyzing source code repositories. Unlike BMN that uses a ta-
ble of binary values to represent usages of different framework types in client code,
PBN encodes the same information as a Bayesian network. A major technical differ-
ence is that PBN internally stores floating point values in multiple conditioned nodes,
whereas BMN stores binary values in a table. A key consequence is that PBN allows to
merge different patterns and to denote probabilities - instead of boolean existence - for
all context information. We introduced a clustering approach for PBN that leverages
this property and enables to trade-off model size for prediction quality. It is not clear
how such a clustering could be adopted for BMN, because its binary representations
does not allow for representing clustered results. While the approach is applicable to
all object-oriented languages, our PBN implementation and evaluation is focussed on
Java.

We perform comprehensive experiments to investigate the correlation between pre-
diction quality and different model sizes. We show that by exploiting clustering PBN
can indeed decrease the model size by as much as 90% with only minor decrease of pre-
diction quality. We also perform a comprehensive analysis of the effect of input data
size on prediction quality, speed and model size. Our experiments show that prediction
quality increases with increased input data and that both the model size and predic-
tion speed scales better with the input data size for PBN compared to BMN. With PBN,
proposals can be inferred without noticeable delay even if thousands of examples are
used as input.

To summarize, this work presents the following contributions:
— A description of (previously unpublished) implementation details of the existing

static analysis of BMN to facilitate future replications.
— A novel extension of the static analysis that extracts the features required for ma-

chine learning to support extended contexts.
— An extensible inference engine for intelligent code completion systems, called

Pattern-based Bayesian Network PBN.
— A novel approach for model training that uses the extended context information.
— A clustering approach for model learning that scales to large input sizes.
— An extensive evaluation of the resulting intelligent code completion system.

We have released downloadable artifacts to allow replication of our results.3 The
released artifacts include all object usages used in this paper and the complete source
code (i.e., all intelligent code completion engines and the evaluations). This should
encourage other researches to compare their results based on the same data set.

The remainder of the paper is organized as follows. We start with a detailed descrip-
tion of our static analysis in Section 2. A detailed introduction of the intelligent code
completion systems that we consider follows in Section 3. We continue with the evalu-
ation in Section 4, threats to validity in Section 5, and related work in Section 6. The
paper ends with an outlook to future work in Section 7 and a conclusion in Section 8.

2. STATIC ANALYSIS OF REPOSITORIES
To learn how specific types of an API are typically used, we implemented a static
analysis that extracts object usages from source code. The term object usage refers to

3http://www.st.informatik.tu-darmstadt.de/artifacts/pbn/
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an abstract representation of how an instance of an API type is used in example code
and consists of two pieces of information: (1) all methods that are invoked on that
instance and (2) the context in which the object usage was observed. The first captures
the method calls that should be later proposed in the intelligent code completion. The
second captures all information about the surrounding source code, i.e., the enclosing
method and class. This idea is based on prior work [Bruch et al. 2009], but it was not
clearly described in the resulting publication. Our work contains a detailed description
of the static analysis to allow other researchers to build their own implementations.
Additionally, we extract more information than the original publication.

Reusable Context Information. The goal of the static analysis is to extract as much re-
usable context information from the source code as possible. In Object-oriented Pro-
gramming Languages, there are two ways to make functionality reusable and to dis-
tribute it to others: libraries and frameworks. Libraries provide useful helpers that
can be reused anywhere in your code. For example, the Java Database Connectivity
(JDBC) API is an example of a library API. In such a context, an intelligent code com-
pletion engine can learn API protocols or which methods are usually invoked together.
However, the surrounding source code usually refers to user-specifics, i.e., the names
are unique and will never be re-used by other developers. This does not provide any in-
formation relevant for intelligent code completion. Contrary, a framework (e.g., Swing,
the Java UI widget toolkit) is an example of the inversion of control principle [Martin
2003]. The framework authors decided for well-designed extension points and provide
base classes and interfaces as the mean for extension. Custom functionality is added
by extending or implementing these. Inside these custom functionality other building
bricks of the framework are used. Because of that, the extensions of a framework con-
tain useful pointers to overridden methods that can also be observed in source code of
other developers. While intelligent code completion systems can also be provided for li-
braries, we focus on frameworks, because the surrounding code contains more context
information and the intelligent code completion can provide more specific proposals.

Consider the example from Figure 1: the user-specific sub-class MyDialog extends
the framework class Dialog. Learning how objects are usually used in a context refer-
encing MyDialog does not provide shareable knowledge because other developers will
name their user-specific subclass different than MyDialog, most likely. The extension
point that was intended by the author of the framework was Dialog so we would ref-
erence this as the enclosing type. The enclosing method is even more concrete and
follows the same pattern. Instead of pointing to MyDialog.createDialogArea, the anal-
ysis extracts Dialog.createDialog as the enclosing method. By going up in the class
hierarchy as much as possible, we increase the likelihood that others use the same
classes. This is valid because, according to the Liskov Subsitution Principle (LSP), the
contract of all subclasses must not break the contract of the super class [Martin 2003].

In addition to the information about the enclosing method, we further extend the
notion of a context in this work and extract more information than in the original pub-
lication. We also capture the enclosing type context, all method invocations to which
an object usage was passed to as parameter, and information about the definition of an
object.

Entry Points and Tracking. We assume that the typical usage of a type is context de-
pendent, therefore, we collect object usages separately for each context. Thereby, each
public or protected method is considered as a single context and is used as an entry
point for the analysis. Private methods do not form a context on their own, because
they were created by the author of the concrete class, do not belong to the abstraction
expressed in the base class or interface, and do not carry any reusable information. A
call graph is computed for each entry point method p

entry

, in which all method invo-
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public class A extends S {

private B b = new B ( ) ;

@Override
public void entry1 ( ) {

b .m1( ) ;
helper ( ) ;
C c = fromS ( ) ;
c . entry2 ( b ) ;

}

private void helper ( ) {
b .m2( ) ;

}
}

public class C {

public void entry2 (B b ) {
b .m3( ) ;
entry3 ( ) ;

}

protected void entry3 ( ) {
D d = new D( ) ;
try {

d .m4( ) ;
} catch ( Exception e ) {

d .m5( ) ;
}

}
}

Entry Point Type Class
Context

Method
Context

Definition Call Site Call Site
Kind

A.entry1 B S S.entry1 Field B.m1() Receiver
B.m2() Receiver
C.entry2(B) Parameter

A.entry1 C S S.entry1 Return C.entry2(B) Receiver
A.entry1 S S S.entry1 This S.fromS() Receiver
C.entry2 B Object C.entry2 Parameter B.m3() Receiver
C.entry3 D Object C.entry3 New D.m4() Receiver

Fig. 2: Object Usages Extracted From Three Entry Points

cations are pruned that leave the enclosing class. Additionally, all exception-handling
edges are pruned from the intra-procedural control flow graph.

An object usage is created for every distinct object instance used in the scope of
p

entry

. We use the call graph to track the object instances inter-procedurally in the
class. The tracking stops on calls leaving the current class (e.g., calls to methods of
other classes) or on calls in the current class that are either entry points or defined in
a super class. In case we find a call to a private method, we step down in this method
and track all objects of the current scope in the private method.

Example. We illustrate our static analysis in Figure 2. When starting at method
A.entry1(), the analysis stores the method calls B.m1() and B.m2() on field b as well as
the call to method C.entry2(B), for which b is used as an actual parameter. The call to
method B.m2() is stored, because the private method A.helper() is called from within
the entry point entry1() and b is tracked in it. b is not tracked in method C.entry2(B)
(i.e., B.m3() is not stored) - even though it is called from within A.entry1() - because
it is declared in another class than p

entry

. Instead of tracking b to this method, the
static analysis stores the information that b is passed as an actual parameter to it.
C.entry2(B) is another entry point for the static analysis. A separate object usage is
created that extracts information about the usage of type B in the context C.entry2(B).

The interpretation of method invocations on this depends on the place of definition
of the target method. Consider the call to A.helper in A.entry(). It is defined in the
same class and it is no entry point, so the analysis steps down into the method and
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tracks all objects in it. In contrast to that, the call to S.fromS() is not tracked, because
it is defined in another class. Objects are never tracked into calls to other entry points,
independently of the defining class (same class or other class).

Data structure. The following list describes all properties that are collected for an ob-
ject usage. The properties Parameter Call Sites, Class Context, and Definitions are in-
troduced in this work. All other properties were previously used and are just included
to complete the description.
— Type: The type name of a variable or, if discernible, the more specific type of an

object instance. For example, if a String is assigned to a variable of type Object
then String is stored as the type of this variable, if this is always the case.

— Call Sites: All call sites connected with the instance. These can be of two kinds:
• Receiver Call Sites are method calls invoked on the object instance. The stati-

cally linked method is stored. In the example in Figure 2, these are the methods
m1() and m2() for variable b starting from entry point entry1().

• Parameter Call Sites are stored if the object instance is passed as the actual
parameter to another method. The invoked method is looked up in the type
hierarchy and the first declaration is stored, which can be an interface or an
abstract base class to store the most reusable context reference. In the enclosing
method entry1(), the method call entry2(B) is an example of a parameter call
site for variable b. The argument index at which the object was passed is stored
as well (omitted for brevity in the example).

— Class Context: The direct super type of the class enclosing p

entry

. In the example,
the class context is type X for entry1(), and Object for entry2(B) and entry3().

— Method Context: The first declaration of p

entry

in the type hierarchy, i.e., the
method declaration of a super type that is overridden by p

entry

or the method dec-
laration in an interface that is implemented by p

entry

. In the example, A.entry1()
overrides X.entry1(), therefore, X.entry1() is used as method context. If no method
is overridden then the method itself is used as the context.

— Definition: Information about how the object instance became available in p

entry

.
We distinguish five different definition kinds, each carrying specific information:

• New: The instance is created by calling a constructor4; the specific constructor
is stored for this kind of definition. In the example, the object usage extracted
for variable d in entry3() is defined by a call to a constructor. Note that field b
of class A is not recognized as having a new definition, because the constructor
is not called as part of the considered entry point.

• Parameter: The instance is a formal parameter of p
entry

; the parameter index is
stored. In the example, the object usage extracted for b in entry2(B) is defined
by a parameter.

• Return: The instance is returned by a method call; the name of the invoked
method is stored. In the example, the object usage extracted for c is returned by
a method call.

• Field: This definition kind denotes that the reference to the object was received
by accessing a class field. We store the fully-qualified name of this field. In the
example, the variable b used in entry1() is recognized as field.) If the field is
initialized in p

entry

, e.g. assigned by a constructor call, then we refer to this
definition instead, assuming it to be more precise.

• This: Denotes that the object usage was the receiver of the call to p

entry

. The
same rules as for the enclosing methods apply here: only calls to methods de-

4In [Bruch et al. 2009] constructor calls were treated as method calls. With the introduction of definition
kinds as part of context information in this work this is changed.
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fined in any super type are collected. S.fromS() is an example of this definition
in A.entry1(). However, the method A.helper() is not included, because it is
defined in the same class as the entry point.

The static analysis always captures fully-qualified references to types, fields, and
methods. A fully-qualified reference to a type includes the package name and the type
name. A fully-qualified field name includes the fully-qualified declaring type, as well as
the name and the fully-qualified type of the field. For a method it is the fully-qualified
type of the declaring type, the method name, the fully-qualified return type, and fully-
qualified types of parameters.

Implementation. We implemented the described algorithm to analyze arbitrary Java
bytecode. Some context information are extracted from the class hierarchies so all
types in the example code need to be fully-resolvable. Our implementation is based on
WALA,5 the static-analysis toolkit for Java bytecode of IBM. We use the 1-CFA [Shiv-
ers 1988; Shivers 1991a; Shivers 1991b] implementation that is available in WALA for
the points-to analysis to track object instances inter-procedurally. Note that the order
of call sites cannot be retained because the 1-CFA implementation is flow insensitive.
This is not an issue in our case since we already store call sites as unordered sets.

The work on the analysis was done in a cooperation with an external company; the
source code of the analysis is proprietary and cannot be made public. However, as
already mentioned in the introduction, we have released enough artifacts to make the
results of the paper replicable even without the static analysis code.

3. MODELS FOR INTELLIGENT CODE COMPLETION
The object usages collected by the static analysis are the input data used to generate
models for an intelligent code completion system. This paper compares two approaches
to the design of such models. The first approach is the Best Matching Neighbor algo-
rithm (BMN) [Bruch et al. 2009]. The second approach, called Pattern-based Bayesian
Network (PBN), is a novel contribution of this paper.

We implemented both BMN and PBN to support the context information described in
Section 2. Unfortunately, neither the original implementation of the BMN algorithms,
nor the evaluation pipeline was publicly available so we had to re-build it. Both ap-
proaches have the same interface to the outside and take exactly the same input. This
makes it very easy to replace the former implementation with the new one, both can
be used interchangeably. In fact, the Eclipse Code Recommenders6 project adapted the
PBN approach for their intelligent call completion in the meantime.

Both BMN and PBN can be queried with an incomplete object usage for a list of
missing method calls. The proposed methods are ordered by the frequency of their oc-
currence in matching situations. Both BMN and PBN can be integrated into existing
code completion systems of modern IDEs. Once the code completion is triggered, the
query is generated automatically by analyzing the surrounding source code. The com-
pletions proposed by the models are integrated into the default code completion popup
offered by the IDE. To propose a method, the equivalent non-recommended entry is
looked up in the list of proposals given by the static type system. A newly created en-
try decorates the original proposal, includes the calculated confidence in its label, and
is added to the top of the proposal list. A selection event is passed to the decorated
proposal, no additional source code needs to be synthesized.
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Dialog.
createDialogArea

ModifyListener.
modifyText

<init> setText getText

Usage 1 1 0 1 0 0
Usage 2 1 0 1 1 0
Usage 3 0 1 0 1 1
Query 1 0 1 ? ?
Proposal 50% 0%

Fig. 3: Proposal Inference for BMN

3.1. Best Matching Neighbor
The Best Matching Neighbor (BMN) algorithm [Bruch et al. 2009] is inspired by the
k-Nearest-Neighbor (kNN) algorithm [Cover and Hart 2006] and leverages domain
knowledge specific to object usages. BMN represents each object usage as a binary
vector, in which each dimension represents an observed method context or a receiver
call site. In detail, each binary vector representing an object usage contains a “1” for
each context information and call site that applies for the object usage at the corre-
sponding dimension, and “0” otherwise. The model for each object type is a matrix
that consists of multiple object usages, i.e., binary vectors. Each column in the matrix
represents a context information or a call site. Each row represents an object usage
found by the static analysis. For illustration, the matrix for the imaginary type Text
is shown in the upper part of Figure 3. Usage 1 is equivalent to the object usage of the
Text widget listed in Figure 1.

Queries are partial object usages and treated similarly. A query is represented as
a vector with the same dimensions as the vectors of object usages in the model. Each
observed context information and all call sites already connected to the variable for
which the completion is invoked are marked with a “1” in that vector. Context infor-
mation that does not match is marked with a “0”. All receiver call sites, which are not
contained in the query, are potential method proposals, this is illustrated by marking
them with “?”. If a developer triggers code completion at the position illustrated in
Figure 1, the query shown in the lower part of Figure 3 is generated.

The nearest neighbors are determined by calculating the distance between the object
usages and the query. The Euclidean distance is used as distance measure, whereby
only dimensions containing a “1” or “0” in the query vector are considered. However,
receiver call sites that do not exist in the query are not included in the calculation, be-
cause it cannot be decided if they are missing on purpose or if they should be proposed.
The nearest neighbors are those object usages with the smallest distance to the query.
Unlike kNN, all neighbors that share the smallest distance to the query are selected,
not only the k nearest neighbors. In our example, Usage 1 and Usage 2 have both
distance 0 and Usage 3 has distance

p
3, thus the former two are nearest neighbors.

The nearest neighbors are considered for the second step of computing proposals. For
each potential method proposal, the frequency of this method is determined in the set
of nearest neighbors. The probability is computed by dividing it by the total number of
nearest neighbors. In the running example in Figure 3, the call to setText is contained
in one out of the two nearest neighbors of the query. Therefore, the call is recommended
with a probability of 50%. The call getText is not contained in any nearest neighbor,
the probability is 0%. The call sites are passed to the completion system as proposals
for the developer, ordered by probability.

5T.J. Watson Libraries for Analysis (WALA), http://wala.sf.net/
6http://eclipse.org/recommenders/
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Object Usages

U1 33.3%

U2 33.3%

U3 33.3%

setText

U1 U2 U3

True 0% 100% 100%

False 100% 0% 0%

<init>

U1 U2 U3

True 100% 100% 0%

False 0% 0% 100%

getText

U1 U2 U3

True 0% 0% 100%

False 100% 100% 0%

Fig. 4: Conditional Probabilities in a Bayesian Network

BMN was re-implemented for this work to be usable in the evaluation. We optimized
it for inference speed of proposals and for model size. For example, we introduced an
additional counter column in the matrix. Instead of inserting multiple occurrences of
the same row, we increase the counter. In addition, we extended the model by more con-
text information, represented as additional columns in the model matrix. Originally,
only the method context and receiver call sites were included and we added support
for the class context, definition, and parameter call sites to obtain a fair comparison of
BMN and PBN. The inclusion in the table is configurable for all context information.
We use this to evaluate if the extra context makes a difference.

3.2. Pattern-based Bayesian Network
This paper introduces a novel approach for intelligent code completion called Pattern-
based Bayesian Network (PBN). Bayesian networks are directed acyclic graphs that
consist of nodes and edges. A node represents a random variable that has at least
two states, which again have probabilities. The states are complete for each random
variable and the sum of their probabilities is always 1.0. Nodes can be connected by
directed edges that indicate that the probabilities of the target node are conditioned by
the state of the source node. A Bayesian network can be used to answer probabilistic
queries about the modeled random variables. If the state of one variable is observed,
this knowledge can be used to infer the updated probabilities of other variables. This
has already been used in other areas, for example to rank web searches [Chapelle and
Zhang 2009] or for recommendations in social networks [Yang et al. 2011].

Using Bayesian Networks as Code Completion Models. PBN uses a Bayesian network to
identify how likely specific method calls are, given that context information and po-
tentially even other method calls have already been observed. The idea is to describe
the probability of a method call conditioned by a specific object usage. We apply Bayes’
theorem to answer the reverse question: how likely is a specific object usage, given
that a method call is already present in the current code. This information can then be
used to infer how likely other yet not present method calls are.

Figure 4 shows the Bayesian network for the example from Figure 3. The Object
Usages node has the states U1, U2 and U3, representing Usage 1 to 3 of Figure 3.
We have observed three object usages and each of them exactly once, thus each has
a probability of 33%. The remaining three nodes represent the method calls <init>,
setText, and getText. The edge from the Object Usages node to the method call nodes
indicate that the probabilities of the calls are conditioned by the object usage. The
states of each method call node are True and False, which represents whether the
method call appears in an object usage or not. For example, the call <init> is present in
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Usage 1, but neither are setText nor getText. Therefore, the conditional probabilities
for the different methods are:

P (<init>|U1) = 100% P (setText|U1) = 0% P (getText|U1) = 0%

Please note that the correct notation is P (<init> = true|U1), but the check for the
state is omitted for brevity. Although this kind of data is easily extractable from exam-
ple object usages, we want to answer a different kind of question in the use case of code
completion. It can be observed, for example, that the constructor <init> is called on
an instance of type Text. The developer wants to know which method call is missing.
Therefore, the probabilities of all method calls are calculated in such a case and method
calls with a high probability are proposed as missing. Hence, if the method setText is
one of the possible calls, we want to calculate the probability P (setText|<init>).

For the following equations, which show the calculations to answer the above ques-
tion, we will need the probability of P (<init>). It is defined as the sum of the joint
probabilities of <init> and each usage U

i

:

P (<init>) =
3X

i=1

P (<init>,U
i

)

= 0.333 + 0.333 + 0

= 0.667

The probability of the method call setText, given that <init> was called before:

P (setText|<init>) =
3X

i=1

P (setText,U
i

|<init>)

Assuming the independence of all methods, Bayes’ theorem can be applied to calculate
the probability: 7

P (setText,U1|<init>) = P (setText|U1) · P (U1|<init>)

=
P (setText|U1) · P (<init>|U1) · P (U1)

P (<init>)

=
0 · 1 · 0.333

0.667
= 0

The calculations of P (setText,U2|<init>) and P (setText,U3|<init>) are similar:

P (setText,U2|<init>) =
P (setText|U2) · P (<init>|U2) · P (U2)

P (<init>)

=
1 · 1 · 0.333

0.667
= 0.5

P (setText,U3|<init>) =
P (setText|U3) · P (<init>|U3) · P (U3)

P (<init>)

=
1 · 0 · 0.333

0.667
= 0

7Even though the methods might not be independent, previous work has shown that no direct correlation
exists between the accuracy and the degree of feature dependencies [Rish 2001]. We will show in our exper-
iments that the accuracy is comparable to existing techniques.
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Fig. 5: Structural Representation of the Bayesian Network used in PBN

By combining the intermediate results, P (setText|<init>) can be calculated:

P (setText|<init>) =
3X

i=1

P (setText,U
i

|<init>)

= 0 + 0.5 + 0

= 0.5

The interpretation of this result is that if <init> is observed for an object instance,
a call to the method setText has a probability of 50%. The same calculations can be
done to reason over getText. Generally, all states of context information and all calls
present in the query are used as evidence in the Bayesian network. Accordingly, the
probabilities of all remaining receiver calls are inferred with respect to these observa-
tions. These calls are collected in a proposal list that is ordered by probability.

If the query contains a combination of features never observed in the training data,
proposals might be incomputable. To avoid such cases, we implemented add-delta
smoothing in our learning algorithm [Chen and Goodman 1996]. A small delta of
0.000001 is added to all probabilities and their sum is normalized to 1.0 afterwards.

Adding Context Information to the Network Structure. So far, the Bayesian network pre-
sented in the example above does not include context information. To add the context
information, the model is extended by adding more nodes that are conditioned by the
object usage node. For example, the method context is modeled by a node that con-
tains one state per observed method context. In contrast to call site nodes that only
have two states, true and false, a state in the method context node corresponds to a
method name and the number of states is not limited. Assume that the node contains
M method contexts and, as it is conditioned by the pattern node with N patterns, the
probability table of this node contains M⇥N values. Each value describes how the cor-
responding method was observed, given a specific pattern. Other context information
nodes are added in the same way.

The complete Bayesian network that will be used in experiments is illustrated in
Figure 5. All nodes for call sites contain only two states, the nodes of the method con-
text, the class context, and the definitions contain multiple states. Note the distinction
between receiver call sites and parameter call sites.

Additionally, we changed the name of the root node from Object Usages to the more
generic name Pattern, because the states of this node do not necessarily map exactly
to observed object usages. In fact, we collapse all object usages that have the same
receiver call sites into a single pattern state. Therefore, context information previously
having conditional probabilities of 0% or 100% will now be represented by their fre-
quency in the set of collapsed object usages. For example, consider the case of two
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object usages for which both the method calls m1() and m2() were invoked. Addition-
ally, assume that one usage was observed in method context C1 the other in C2. Both
will be represented in a single state P of the pattern node, because they refer to the
same combination of method calls. As the context was different for both, both method
contexts m1() and m2() each have a probability of 50% given the pattern P . The prob-
ability of all states in the pattern node is calculated by normalizing their frequency.

Introducing Clustering for Improved Learning. The number of detected patterns has a major
impact on the size of the resulting model. Each detected pattern creates a new state
in the pattern node so its size grows accordingly. Additionally, the number of stored
values in all other nodes also depends on the number of patterns, because all nodes
are conditioned by the pattern node. Each conditioned node needs to store an amount
of values equal to the product of its own states and patterns. Therefore, reducing the
number of states in the pattern node has a huge positive impact on the model size.
We propose to use a clustering technique to reduce the number of detected patterns.
Information may be lost in this process, because multiple similar object usages are
merged and the quality of recommendations could be affected. On the other hand,
clustering ensures the scalability of our approach. It is necessary to find a reasonable
trade-off between model size and proposal quality.

We implemented a learning algorithm that is inspired by Canopy Clustering [Mc-
Callum et al. 2000] to detect patterns for the PBN model. Similar to Canopy, a random
object usage is chosen from the set of all object usages found for a specific type. This
object usage becomes a cluster center. Each object usage that has a smaller distance to
this cluster center than a specific threshold is assigned to the cluster and is removed
from the set of object usages still to be assigned to clusters. The algorithm proceeds
until all object usages are assigned to clusters. Each cluster becomes a state of the
pattern node in the resulting Bayesian network. The probability of the pattern state
is the number of object usages in that cluster divided by the total amount of object
usages. Each value, i.e., call site or context that was set in any object usage belonging
to the cluster, gets a conditioned probability reflecting the frequency of the respective
value in the cluster.

To determine the distance between two object usages, the cosine similarity [Strehl
et al. 2000] is used, which is also a common choice in the research area of information
retrieval. There, vector representations have similar characteristics as in the context
of representing object usages: they are typically sparse and high-dimensional. Cosine
similarity can deal with such vector characteristics well [Schultz and Liberman 1999].
It is defined as the angle between two vectors v1 and v2:

d

cosine

= 1� v1 · v2
|v1| · |v2|

It has a helpful property for distance calculation between object usages: If vectors
differ, their distance gets smaller with the number of (set) dimensions they have in
common. For example, the distance between two vectors that differ by one call without
having another call in common is bigger than the distance between two vectors that
differ by one call but that have one or more calls in common. Note, that 1.0 is the
maximum distance calculated by cosine similarity. A geometrical interpretation of this
distance is that two vectors are orthogonal and no dimension is set for both.

Although this clustering approach is very simple, our experiments show reasonable
results. The algorithm is fast and can handle huge amounts of data. Also, it implicitly
solves the question of how many patterns are to be found, which for many clustering
algorithms must be defined upfront. Additionally, the distance threshold can directly
control the trade-off between prediction quality and model size. For example, the min-
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Fig. 6: One Iteration of an n-Fold Cross Validation

imum threshold 0.0 results in practically no clustering at all. The higher the value
chosen, the more information will be lost and the smaller the size of the model will
become. In the following sections, we will encode the concrete threshold used for a
PBN instance in the name, e.g., a PBN10 instance uses a distance threshold of 0.10.
By using a threshold of PBN100, all usages are merged into a single pattern. In that
case, the model degenerates to a simple call-frequency based model in which context
information has no influence on the proposals anymore.

4. EVALUATION
Two different recommender engines have been discussed in the last section. Both ap-
proaches can be used interchangeably: they work on the same input data generated
by the same static analysis, have the same interface to the outside, and create the
same kind of proposals. Differences between them will studied by a comprehensive
evaluation in this section.

4.1. Methodology
The evaluation of previous recommender systems is usually focused on comparing pre-
diction quality of different algorithms, performance or mode sizes are only mentioned
as a side note.8 While we also thoroughly evaluate prediction quality, we also focus on
additional criteria. Since recommender systems are supposed to be used by humans
on typical developer machines with limited resources, we believe that an (empirical)
evaluation of recommender systems should take two additional properties into consid-
eration: (1) time needed to compute proposals and (2) size of the models that are used
to make the proposals.

Evaluating the Prediction Quality. We evaluate each type in an API under investigation
separately with a 10-fold cross-validation. We split all available object usages for a
single type that have been extracted from the static analysis into 10 different splits as
shown in Figure 6. Ten folds are built out of these splits, whereby each fold consists of
one split used as validation set and the union of the remaining nine splits as training
set. For each fold, models are learned from the training set and the validation set is
used to query these models. Accordingly, it is guaranteed that no object usage is used
for training and validation at the same time.

Our experiments have shown that intra-project comparisons introduce a positive
bias to prediction quality. We want to avoid this kind of bias to better reflect devel-
opment reality, i.e. the intelligent code completion engine is used in a code base that
was not used to learn the models. Therefore, we ensure that all object usages gener-
ated from the same project are assigned to the same split. This means that the set

8For example in [Li and Zhou 2005; Bruch et al. 2009; Zhang et al. 2012]
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Fig. 7: Conceptual Illustration of the Evaluation of a Single Proposal

of projects used to create queries is disjoint from the set of projects used to built the
model. As a result, we can only include types in the evaluation that are used in at
least 10 different projects and the sizes of the splits differ slightly, especially if the
total number of object usages is small for a specific type.

Each usage from the validation set is used to query the model and to measure the
results. This approach is illustrated in Figure 7. A query is created by removing infor-
mation from a complete usage. The resulting incomplete usage is used as a query, and
the removed information constitutes the expectation. When a completion is requested
by passing a query, the recommender engine returns a list of proposals in descending
order of the proposals confidence value. We follow previous work and filter all pro-
posals with a confidence value lower than 30% [Bruch et al. 2009]. The proposals are
compared to the expectation and the F1 measure is calculated to quantify the quality
of a given proposal. F1 is the harmonic mean of the two measures precision and recall:

precision =
#hits

#proposed

recall =
#hits

#expected

F1 = 2 · precision · recall
precision+ recall

Call sites are stored in an unordered set, so no information is available on the order
in which the calls happen. We use different strategies of removing both receiver and
parameter call sites to create queries. Other context information (e.g., the enclosing
method) is not removed, because we think that they always exist in the context of a
framework.

We make use of two different strategies to remove call sites from the set. The No
Calls strategy removes all call sites and therefore creates exactly one query for each
usage. This mimics a developer that starts to work in a new method and triggers code
completion to get a first impression of what to do. The resulting queries are denoted as
0|M queries, where M is the number of receiver calls contained in the original object
usage (i.e., a 0|3 query contains no calls from the three calls that are contained in the
original object usage). The Partial Calls strategy removes about half of the call sites
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(i.e., 0|1, 1|2, 1|3, 2|4, ...). The resulting queries are denoted as N|M queries, where N
is the number of calls contained in the query, and M the number of calls in the original
object usage. Both N and M refer to a number of receiver call sites. This strategy simu-
lates developers, who started to do some work in a specific context, but came to a point
where they did not know how to continue and trigger code completion for help. There
are

�
M

N

�
possibilities to remove calls from the set. Because this number gets impracti-

cally large with a growing number of calls in the set, only 3 random N|M queries are
taken. We calculate the average result of these queries to merge the separate results
into a single result value and store it as the quality for the originating object usage.
Parameter call sites are removed separately with the same strategy. however, they are
not part of the notation, as they are only context information and not proposed by the
completion system. If not stated otherwise, the Partial Calls strategy is used in all
experiments of this paper.

Evaluating the Model Size. The model size can be determined empirically by measuring
the memory representation in the Java Runtime Environment (JRE). However, the
result of this approach depends on implementation details of the model, the used JRE,
and characteristics of the garbage collection, which might induce considerable noise.
We decided to use a more simple approach of calculating the theoretical model size of
the raw information that is contained. For BMN, the size is calculated by multiplying
the number of rows in the table by the size of each row. For PBN, the total number of
stored float values in the Bayesian network is calculated. We calculate the size in Byte
for both approaches to create comparable values.

Evaluating the Inference Speed. All computations that depend on context information
can be made efficient by pre-computing as much as possible and storing this informa-
tion in the model. The pre-computation does not need to be fast, because it can happen
offline on a powerful server. However, using intelligent code completion requires sev-
eral steps which are complex to compute whenever code completion is activated:

(1) Analysis of the working context in which the completion was triggered
(2) Building a query
(3) Loading of the appropriate model, used to answer the query
(4) Inference of relevant method calls
(5) Rendering of the code completion popup

The perceived duration of the completion task for the user is the sum of all of these
steps, but not all of them are evaluated in this paper: the static analysis of the working-
context is the same for BMN and PBN. Therefore, step 1 is not considered. All models
are pre-computed and stored in a serialized form. To be usable, they need to be de-
serialized again and loaded into memory. Nevertheless, by using caches this loading
time can be avoided in most cases. Additionally, I/O increases noise in performance
measurements and the loading time itself mostly depends on the framework used for
serialization. Therefore, we ignore step 3 as well. The two steps 2 & 5 are trivial com-
pared to other phases and can safely be ignored. Step 4 is of relevance for this paper.
First, it depends on the size of represented data in a model and is critical for scalability.
Second, the inference process differs between the models.

The precision of timing information that can be read from the system timer is mil-
liseconds.9 To increase the precision of the results, we (1) measured the total computa-
tion time for all proposals and divided this time by the number of queries and (2) en-
sured that at least 3000 proposals are requested per type. The second point mainly

9http://www.ibm.com/developerworks/java/library/j-benchmark1/
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addresses the evaluation for types with only a few object usages, because here the typ-
ical answer times are smaller than a millisecond. We repeated all experiments that
include timing three times and calculated the average to overcome slight deviations
caused by potential interfering processes.

Our experiments showed that the just-in-time compilation of modern runtime en-
vironments has a significant impact on the performance of the inference. The steady
state is reached after thousands of queries for each model. Although this might be
unrealistic for a practical usage of the completion system, we decided to repeat all
experiments that evaluated inference speed multiple times until the resulting values
were stable to create comparable and repeatable results.

Experimental Setup. To speed up the experiments, we implemented a map-reduce like
computation in the evaluation framework and distributed the computation to multiple
worker threads running on different machines. All machines were running Oracle Java
8 SE.10 Experiments that include measurement of timings were run locally on an Intel
Core i7 machine.11 We designed the evaluation such that the results are not influenced
by disc I/O (e.g., loading all necessary data into memory before starting the evaluation),
hence further information about the storage system is omitted.

Data set. The SWT framework,12 the open-source UI toolkit used in the Eclipse de-
velopment environment, is used to evaluate the code completion engines presented in
the previous section. For both approaches, we learn from and test against SWT exam-
ple code. We chose a snapshot of the Eclipse Kepler update site13 - the main source of
plug-ins for all Eclipse developers - as the code base. We assume that the API usage
reached a stable state because the source code is already released and no longer un-
der development. Changes to it are only due to bugs being fixed. Our static analysis
identified about 190,000 object usages for different SWT widget types within the 3,186
contained plug-ins. The type org.eclipse.swt.widgets.Button is by far the type with
the most usage data with more than 47,000 object usages.

4.2. Analyzing Impact of Additional Context Information
Section 2 presented the context information that we collect per object usage. Three
kinds of context information - the type of the receiver, the receiver call sites, and the
enclosing method definition - were previously used for code completion recommenda-
tions. The other three kinds - parameter call sites (2+P), class context (2+C), and defi-
nitions (2+D) - are introduced in this work.

In this section, we investigate whether the new context information can be used to
improve the quality of the intelligent code completion. The baseline for this experiment
are models that do not use the new context information. We compare this to the mod-
els that are created with the new context information and exhaustively evaluate all
combinations of enabled information classes. First, we activate all information classes
separately, then we activate pairs (2+DP, 2+CP, 2+CD), and in the end, we activate all
together (2+ALL). We are especially interested in first insights about the trade-off be-
tween increased model size and prediction quality gain.

We use all available object usages in this experiment that were extracted for types
that belong to the org.eclipse.swt.widgets package. We average the prediction qual-
ity over all queries and average the model size over all models generated for different
types. However, it is necessary to be cautious with the interpretation of the model size

10Java(TM) SE Runtime Environment (build 1.8.0 25-b17) with heap settings -Xmx3g
11Intel Core i7 with 2.8Ghz and 16GB of RAM with a clock speed of 1600Mhz
12http://www.eclipse.org/swt/
13http://download.eclipse.org/releases/kepler/, accessed September 30, 2013

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.



39:18 Proksch et al.

0.46

0.47

0.48

0.49

0.50

0.51

0.52
F 1

Va
lu

e

0

2

4

6BMN PBN0

M
od

el
Si

ze
(M

B
yt

e)

2+C � • � � � • • • � • � � � • • •
2+D � � • � • � • • � � • � • � • •
2+P � � � • • • � • � � � • • • � •

Fig. 8: Comparison of Context Information (All SWT Widgets)

in this plot, for two reasons: First, a simple average puts an emphasis on types with
only few object usages: the available input is not equally distributed among the types,
the majority of object usages is extracted for a minority of types. Therefore, the result-
ing model sizes shown in the plot are biased towards small input sizes. Second, it is
not possible to directly compare model sizes for BMN and PBN in this plot. As we will
see in a later subsection, their implementation make them scale differently for types
with only a few object usages. All the same, we decided to include the model size. Even
though it is necessary to read it with caution, it is a first indicator of the impact of a
specific information class on the resulting model size. The exact impact of the amount
of available input on model sizes is analyzed in a later subsection.

Figure 8 shows the experiment results. The horizontal axis of the plot shows differ-
ent configurations of context; the legend under the plot shows which context informa-
tion is used in each configuration. The vertical axis is organized in two dimensions:
the prediction quality (on the left) is depicted with black bars and the average model
size (on the right right) is depicted with smaller white bars. The plot contains results
for different BMN and (unclustered) PBN0 models.

When comparing the configurations with activations of each context information
kind in isolation, 2+D is the context information with the biggest impact (third bars in
the plots of both BMN and PBN). Compared to baseline, this configuration increases
the F1 value by 0.03, which represents an improvement of 6% for both BMN+D and
PBN+D. However, this comes at the cost of a model size that is three times bigger
for BMN+D and 1.7 times bigger for PBN+D. The results are indecisive for both 2+C
and 2+P: In case of BMN, the prediction quality is slightly increased for BMN+C and
decreased for BMN+P, but it is the other way around for PBN0. We consider both deltas
irrelevant for the results as they are small (i.e., 0.01). While 2+C has only a minor effect
on the model size, 2+P significantly increases it.
2+D is the dominating context information; the others seem to be negligible.

The results are similar when multiple context information kinds are activated to-
gether. We can ignore 2+CP, because the prediction quality gain is low. In case of
BMN+CP, it is even lower than the baseline. Both 2+CD and 2+DP show a compara-
ble prediction quality to 2+D. However, the introduction of both information classes
increases the model size. We conclude that adding them is unnecessary, since they do
not increase the prediction quality. For both BMN and PBN the 2+ALL configuration
leads to worse results. Presumably, the reason for this is that queries become too spe-

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.



Intelligent Code Completion with Bayesian Networks 39:19

0 5 10 15 20 25 30 35 40 45
0.30

0.35

0.40

0.45

0.50

0.55

0.60 BMN+D

PBN0+DPBN10+DPBN15+D

PBN25+DPBN40+D

PBN60+D

PBN70+D

PBN100+D

Model Size (MByte)

F 1
Va

lu
e
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cific, i.e., different object usages become more similar because they share irrelevant
features. However, we did not further analyze this result.

Given the results, in the remaining experiments, we focus on the evaluation of 2+D
approaches only. Next, we investigate ways of reducing the model size of PBN via
clustering and analyze the effect of doing so on the prediction quality. The model size
cannot be reduced for BMN: BMN+D and PBN0 will be our reference points regarding
prediction quality.

4.3. Distance Thresholds of the Clustering for PBN
In Subsection 3.2 we introduced a clustering technique to reduce the size of learned
models. Now, we compare BMN to several instances of the PBN approach that all have
different thresholds for the clustering. The distance threshold is used to control how
much information is dropped during the clustering. Recall that the threshold is en-
coded in the name, e.g., a PBN15 configuration clusters all data points with a mutual
distance of less than 0.15. PBN0 is the unclustered instance. We conduct this experi-
ment to identify distance thresholds that provide useful trade-offs between prediction
quality and model size.

Model sizes will not only depend on the chosen threshold, but also on the
number of available usages for a type. Therefore, this Subsection has a focus on
org.eclipse.swt.widgets.Button. With about 47,000 usages, this is the type for which
we have extracted the most object usages.

The results of this experiment are illustrated in the scatter plot in Figure 9. The
plot contains data points for BMN+D and for several PBN+D variants with different
distance thresholds. All points are positioned according to their respective model size
in Megabytes and prediction quality denoted by the F1 measure.

The plot shows that the data points for BMN+D and for the unclustered PBN0+D are
very close. This means that they exhibit similar model sizes and prediction quality.
The model size can be reduced through clustering by setting the distance threshold.
Even with a conservative distance threshold of PBN15+D, it is already possible to sig-
nificantly reduce the model size with virtually no effect on the prediction quality. If

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.



39:20 Proksch et al.

the threshold is further increased, a small decrease in quality can be measured while
the model size constantly decreases. The imaginary curve that connects all PBN in-
stances in the plot has an inflection point at PBN40+D. This inflection point seems to
be a moderate clustering that leads to a good tradeoff between prediction quality and
model size.

PBN40+D saves 90% of the model size with a F1 decrease of only 0.03.

If the threshold is even further increased, the clustering generates fewer and fewer
patterns, because all object usages are aggressively merged. This leads to a very fast
decrease in prediction quality. The prediction quality of PBN60+D decreases by 0.08
when compared to PBN40+D. However, the model size is comparable to the minimal
model size of the PBN100+D approach. The prediction quality drops significantly if the
threshold is increased beyond 0.60. These cases can be ignored as the model size is
already negligible for PBN60+D.

In summary, the distance threshold can be used to control the tradeoff between
model size and prediction quality depending on the use case. The maximum prediction
quality is provided by BMN+D or from the unclustered PBN0+D instance (there is no
measurable difference between them); however, both come with large model sizes. If a
small model size is important, then the aggressive clustering of PBN60+D still provides
a reasonable prediction quality. For use cases, where both model size and prediction
quality are important, PBN15+D or PBN40+D seem to be provide good trade-offs. We use
these three thresholds in the remaining experiments to create clustered instances, in
addition two the two unclustered variants.

The PBN distance threshold can be used to control the tradeoff between model size
and prediction quality.

4.4. Scale to Large Input Sizes
We now look at the effect of increasing the number of object usages on the prediction
quality, model size, and inference speed. We wanted to investigate two different ques-
tions: (1) How do different approaches scale from smaller to bigger input sizes? (2) Is it
possible to further increase prediction quality by using bigger datasets. We wanted to
extrapolate the results to predict saturation effects, i.e., when providing more usages
will not increase prediction quality.

The experiment is limited to org.eclipse.swt.widgets.Button, because it is the
only type for which we have more than 40, 000 object usages available. A random subset
of all available object usages was used to conduct a cross-fold validation. We started
with a minimal set of object usages and exponentially increased the input size in all
experiments of this subsection. To get stable results, we ran three iterations for each
input size and stored their average result. The previously chosen representative PBN
instances and BMN are used in this experiment, all include 2+D context information.

Model Size. The impact that scaling the input size has on the model size is shown
in Figure 10a. The input size is shown on the logarithmic horizontal axis and the
resulting model size in Megabytes is shown on the vertical axis. The plot shows that
the model size for PBN0+D is generally bigger than BMN+D. However, the model size
grows faster with an increasing input size for BMN+D. At an input size of 40, 000, both
have a comparable model size. We could not evaluate larger input sizes, but the plot
shows that the model size of BMN+D grows faster. A non-logarithmic plot of the same
values, which we omit for space reasons, shows a linear increase for BMN+D and a
logarithmic increase for all PBN instances. If we extrapolate the results to more object
usages, we expect that BMN+D has bigger models than PBN0+D. This is even more
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Fig. 10: Effects of Increasing Number of Object Usages (Button)

obvious for clustered instances: the break-even for PBN15+D is reached at ⇠ 10, 000
usages, and at even less than 3, 000 usages for PBN40+D and PBN60+D.

The model size of PBN scales better than BMN with the input size.

Inference Speed. The impact of the scaled input size on the inference speed is shown
in Figure 10b. The input size is shown on the logarithmic horizontal axis and the
resulting inference speed in milliseconds is shown on the vertical axis. The plot shows
that inference speed is irrelevant for input sizes less than 10, 000. However, starting
from 3, 000, the slope of the BMN+D plot is much higher. A non-logarithmic plot, which
we omit for space reasons, shows a linear increase for BMN and a logarithmic increase
for PBN.

Inference speed is significantly higher with PBN and scales better than with BMN.

Section 4 introduced time limits for the proposal for inference. The imperceivable
delay of 100 milliseconds is hit by BMN+D at about 15, 000 usages. If the input size is
larger than that, a delay is perceivable in the code completion. By extrapolating the
results beyond 40, 000 object usages, it becomes obvious that a further increased input
size soon exceeds the limit of a second. This would interrupt the developer’s thought
process and would present a disturbance in the work flow.

The inference computation of PBN is significantly faster than this limit. Even the
unclustered PBN0+D takes only 15ms to compute the proposals with 40, 000 object us-
ages. The inference speed is even higher for the clustered PBN instances. By extrapo-
lating the results, it is obvious that the input size can be significantly increased before
any time limit is reached.

Input size can be significantly increased before inference speed is an issue for PBN.

Prediction Quality. The last property to analyze was the impact of the scaled input size
on the prediction quality. The results are shown in Figure 11. In both plots, the input
size is shown on the logarithmic horizontal axis, the prediction quality denoted by the
F1 measure is shown in the vertical axis.

Figure 11a was created with input of Button only to compare the results of different
approaches. Unsurprisingly, the plot shows that increasing the input size has a positive
impact on prediction quality. BMN+D and PBN0+D show equal prediction quality and no

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.



39:22 Proksch et al.

10 30 100 300 1000 3000 10000 40000
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Number of Object Usages

F 1
Va

lu
e

BMN+DEF

PBN0+DEF

PBN15+DEF

PBN40+DEF

PBN60+DEF

(a) Button Only

10 30 100 300 1000 3000 9000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Object Usages

F 1
Va

lu
e

Button

(b) Types With Most Object Usages (PBN0+D)

Fig. 11: Prediction Quality for Increasing Amounts of Object Usages per Type

difference in scaling behavior: the plot is flattening for larger input sizes, even though
it has a logarithmic scale. The interpretation of this is two-fold: First, it is possible to
see saturation effects starting at about 1, 000 object usages, i.e., every tripling of the
input size leads to a smaller increase in prediction quality. This is a promising result,
because for most types there is not so much input available. Second, even though the
gain in prediction quality constantly decreases, it is still possible to further increase it
by using more input. By extrapolating the results for larger input sizes, it seems that
the boundary for Button is an F1 value of 0.6� 0.65.

First saturation effects can be observed with an input of 1, 000 object usages, use
more input to maximize prediction quality.

The plot also contains the results of the three clustered PBN instances. Even though
we have seen in the previous experiments that PBN15+D scales significantly better with
input size than the unclustered PBN0+D, the prediction quality is exactly the same. If
the clustering is more relaxed, a negative impact on the prediction quality can be seen.
For PBN40+D, there seems to be a gap in prediction quality if more than 300 usages
are used. For PBN60+D, the prediction quality seems to saturate between 300 � 1, 000
usages. Both results suggest that there might be potential to improve the clustering
approach, which we want to address in future work.

Using PBN15+D for large input sizes preserves a reasonable prediction speed and
model size, without negative effect on prediction quality.

We further analyzed whether these results for Button also hold for other types.
Therefore, we conducted the same experiment for all types of SWT for which we could
extract at least 1, 000 object usages. We used PBN0+D for the comparison. The results
are shown in Figure 11b. The result for Button, which has already been shown in pre-
vious Figures, is shown as the dashed line. Lines that are not continued to the end
of the plot belong to types for which we do not have enough object usages. The plot
is not meant to present quantitative results of how well models for these types work,
but to qualitatively illustrate general trends of saturation effects. The plot shows that
recommender systems do not work equally well for all types: Some already start on a
high F1 level, others barely reach an F1 level of 0.2 with models learned from 3, 000 us-
ages. However, all plots roughly point into the same direction, which means that their
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Fig. 12: F1 Values for 0|M and N|M Queries (All SWT Widgets)

scaling with the input size is comparable and that the previous findings are also valid
for all of them.

Lessons Learned. The experiments have shown that it is possible to increase the pre-
diction quality even further by using more than 40, 000 usages as input. However, the
number of input values that lead to further improvement grows exponentially. Such
large input data sets make the evaluation very time consuming, though, because with
a n-fold cross validation every usage is used as a query once. In total, we had an input
data set of over 190, 000 usages. Even for fast code completion configurations, which
infer the proposals in less than 100ms, computing all queries takes about 5.5 hours.
All experiments exercised more than one configuration, including very slow ones that
need more than a second for inferring proposals, therefore, a complete evaluation run
took more than 7 days for some experiments.

We have shown that for our data set the prediction quality is already very close to
the expected maximum with an input size of 10, 000 to 30, 000 usages. Even though we
used all available input in our experiments, we postulate that it is enough to use only
a subset to get reasonable evaluation results, as long as this subset is large enough.
For future evaluations, a faster and nevertheless valid approach may be to run experi-
ments multiple times with randomly selected subsets and to average the results. This
would speed-up the experiments significantly without invalidating the results.

4.5. Closer Look at the Prediction Quality
All experiments in prior sections were focussed on very general questions regarding
configuration and scaling. We are also interested in a better understanding of the pre-
diction quality of the recommender. This last series of experiments analyzes the im-
pact of the new context information in different scenarios. We identify scenarios that
greatly benefit from the added context information, but we also point to examples in
which the added context information does not make a difference.

Different Query Types. We compare the results for different types of queries. We use two
kinds of queries for the experiment: No Calls queries that do not contain any calls (i.e.,
0|M) and Partial Calls queries that preserve about half of the calls from the original
usage (i.e., N|M). As motivated in the description of the methodology in Section 4.1,
these query types represent two different use cases.
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Fig. 13: Results for Different Definition Sites (All SWT Widgets)

The plot in Figure 12 shows the results for the different recommender instances. The
filled bars represent the result for instances that do not consider the additional context
information. All bars have a white extension on top that represents the increase in
prediction quality gained by considering 2+D. The rightmost category in both parts of
the plot contains the aggregated results of all queries that contained 7 or more method
calls and therefore did not fit into another category (i.e. 0|7+ contains 0|7, 0|8, ...; *|7+
contains 3|7, 4|8, 4|9, ...). The small grey number over the bar groups denotes the
amount of queries that fall into this category.

Let us first consider only the filled bars of the approaches without additional context
information. We find that 0|1 seems to be a special type of query for two reasons.
First, it occurs about three times as often as 0|2 but the prediction quality is lower.
Second, compared to the other query types and to PBN0, the impact of the clustering
on prediction quality is notably different for PBN60 (i.e., 0.15 vs. ⇠ 0.08). All approaches
show similar characteristics: they have a jump in prediction quality from 0|1 to 0|2, but
the prediction quality constantly decreases for 0|2+ queries. However, the decrease is
uniform for all approaches.

Prediction quality stays roughly on the same level across all N|M categories. Only
PBN60+D exhibits a decreasing F1 value for increasing M values. Both plots suggest
that calls seem to be a very important piece of context information. Additionally, calls
seem hard to predict when no other calls are given already, the F1 value of 0|M is lower
across all approaches.

Patterns that contain many calls are hard to predict if queries contain no calls.

Now, let us consider the white bar on top of all results, which represents the delta in
prediction quality introduced by considering 2+D. The plot shows that the additional
context information leads to a general increment of prediction quality. However, the
increment is so small for some combinations that the white box is invisible.

A special case is the 0|M queries, which show a big delta. Apparently, the addi-
tional context information is especially helpful in situations where no calls are in-
cluded. The delta seems to be comparable between all other query types and between
all approaches, the differences seem to be negligible. It only seems to be a bit bigger
for 0|7+ queries. The benefit of the additional context information for N|M queries is
smaller, but present.

The greatest benefit of using 2+D is gained for queries that do not contain any calls.
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Different Definitions. To get a better understanding about the scenarios in which the
recommender systems performs well, we conducted an experiment that evaluated the
different kinds of definition information discussed in Section 2 separately. We gener-
ated queries with the Partial Calls strategy for the available object usages of all SWT
types. The resulting F1 value is the average over all queries.

The results of this experiment are shown in Figure 13. Each bar group in the plot
represents a definition kind, denoted in the horizontal axis. Each single bar reflects the
results for a specific approach. The filled part of the bar is the result if no additional
context information is used, while the white part on top represents the delta intro-
duced by 2+D. The small numbers attached to the bars denote how many queries are
available for this kind of definition, please note the large differences in these numbers.
Compared to the other definitions, there are only few usages available for PARAM and
THIS. The vertical axis shows the prediction quality as F1 value.

In general, it is interesting to see that the prediction quality is very different for the
various kinds of definition. The best results are observed for queries on object usages
with THIS definition, but the number of queries might not be big enough to decide
that. Many queries exist on object usages with NEW and FIELD definitions and both
show comparable results, even though queries on object usages with NEW definition
perform with higher prediction quality. The prediction quality for queries on object
usages with PARAM definition is slightly lower than this, but again, there is only a
small number of usages available for this definition. The worst results are achieved
for queries on object usages with RETURN definition, the prediction quality is ⇠ 0.15
lower than for NEW definition.

All recommenders in this experiment gained similar improvements from additional
context information over all definitions. The only exception is the excessively clustered
PBN60+D instance, for which the gain was so small that it is not visible in some bars of
the plot.

The additional context information is equally valuable for all definition kinds.

5. THREATS TO VALIDITY
In the following, we outline some risks and threats to validity that we identified, along-
side with a discussion of our countermeasures to mitigate them.

The selection of the data used in this work may not generalize. One decision that
may be challenged is the use of SWT as the framework to learn typical usages for. It
is questionable whether the findings generalize for other frameworks. However, SWT
was already used in prior research [Bruch et al. 2009; Zhang et al. 2012] and by using
the same dataset, the results are made comparable. In addition, we analyzed a newer
Eclipse version with a bigger code base and observed a significantly higher number of
object usages compared to those previous works. The second decision to justify is using
the main Eclipse update site as the input source. We claim that this is the best source
for SWT usages one can find for the following reasons: Eclipse is a major application
that uses SWT and contains a variety of plug-ins implemented by different developers.
Further, the code quality is very high: all code is released and actively used inside
the Eclipse IDE, there is no unfinished code, and unmaintained or dead projects are
removed from the official update site.

Another threat to the validity of the results is induced by the static analysis, the
basis for all object usages used for learning and the evaluation. Potential errors prop-
agate through both phases and would influence the results. To mitigate this issue,
we created an extensive test-suite for the static analysis. Currently, it consists of 67
automated unit tests that contain code snippets and check the analysis results for va-
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lidity. Several assumptions and design decisions are taken for the analysis (e.g., to
take the first appearance of a method in the type hierarchy to define the method con-
text, instead of for example using the super method). Another decision was to prune
exception-handling edges from the call graph and therefore ignore all method calls in-
side catch blocks. These assumptions and decisions influence the results and should be
further analyzed in the future. However, the only consequence is that the recommen-
dations are potentially suboptimal. The assumptions do not introduce an unfair bias
in the experiment results, so they are not a threat in a strict sense.

The evaluation methodology may also pose a threat. As it is based on complete source
code, it is unclear in which order calls to methods were originally introduced by the
developer. The sequence of method calls, as they appear in the finished source code,
might not be the same as the order in which they were added. Not knowing this, it
is unclear in N|M experiments which N method calls must be provided as known to
be already called. The mitigation technique used is to randomly choose the method
calls and generate three random queries for each object usage that should be used
for validation. Another mitigation strategy could be to preserve the ordering of the
method calls as they were found in the analyzed code, but we think the former is the
more conservative assumption. The only real solution would be to use real user data
for the validation, instead of an artificial evaluation, which is outside of the scope of
this paper.

6. RELATED WORK
Robillard et al. [Robillard et al. 2013] provide a comprehensive survey of research on
inferring API properties in the last decade (2000 - 2011). We will discuss closely related
work to our approach and refer the reader to the survey for a broader view.

The first paper in the area of learning reuse patterns is from Michail [Michail 2000]
who use association rule mining to document typical API usage. Li and Zhou also use
association rule mining for PR-Miner [Li and Zhou 2005]. They learn the rules on
item sets of program elements to automatically extract general programming rules.
Potential bugs are identified by finding code that violates the learned rules.

DynaMine [Livshits and Zimmermann 2005] uses check-ins extracted from the re-
vision history of a project to learn about calls that are introduced together. Similar to
the approach discussed before, the rules are used to detect potential bugs. However, in
this case, the rules are checked at runtime instead of in a purely static analysis.

Monperrus et al. [Monperrus et al. 2010] propose an approach to learn from object
usages which methods are typically called on a type in specific contexts. On the learned
data, they define a strangeness function to score user code. The higher the strangeness
score is, the more likely the code misses a method call, which might be a bug and should
be investigated further. Their strangeness function seem to be a reverse of our distance
measure, but it is calculated differently (i.e., by relating the number of exact matches
of an object usages to the number of almost exact matches). They evaluate their ap-
proach by artificially degrading real code and detecting the created bugs. Additionally,
they manually investigate the 19 highest-confidence warnings reported for the user
interface part of the Eclipse IDE and report them as potential bugs. Out of these, 8
were already fixed at the time they submitted their approach.

FrUiT is a Framework Understanding Tool integrated into Eclipse [Bruch et al.
2006] that applies association rule mining on the class level. They use three kind of
properties to learn the rules for an example class: all method calls existing in that
class, the list of extended classes, and the list of overridden methods. The approach
is evaluated using three case studies with rules learned for the SWT framework from
code shipped together with the Eclipse IDE. The results are promising, but even the
authors stated that the algorithm does not scale to large input sizes. Their more re-
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cent work, the Best Matching Neighbor algorithm [Bruch et al. 2009], which learns
from existing example code to improve code completion systems, was discussed in de-
tail in Section 3.1. We propose an alternative model, show potential extensions, and
compare both models in our experiments. A position paper by the same authors pro-
poses the idea to use graphical models as documentation for typical usage patterns
[Bruch and Mezini 2008]. However, the structure of the models was in an early stage
and the focus was primarily on documentation instead of code completion.

Zhang et al. develops the tool Precise [Zhang et al. 2012] to recommend actual pa-
rameters to specific calls. They adapt the kNN algorithm [Cover and Hart 2006] to
find usages similar to the current context. The parameter call sites we extract could
also be used to build a similar parameter recommender. It is also very likely that their
approach would benefit from the context information introduced in this paper.

Gvero at al. proposes the code completion tool InSynth [Gvero et al. 2013]. In con-
trast to our approach, it does not require a receiver object as input, but instead the
expected type of an expression which should be completed. Knowing the expected type,
they search for possible expressions like constructor calls and method calls in reach-
able APIs and fit available locals as required arguments. They use weights to guide
their search, but potentially propose all possible solutions, whereas our approach pro-
poses only typical usages which are considered helpful in the current context.

Besides the above approaches for unordered usage patterns, several approaches in-
fer ordered usage patterns. Obviously, capturing sequences in which calls appear in
code requires more sophisticated data structures. Therefore, most approaches intro-
duce graph based structures.

Zhong et al. [Zhong et al. 2008] propose Program Rules Graphs (PRGs). PRGs are di-
rected graphs whereas vertices denote methods and edges relationships between those.
In their tool, Java Rule Finder, they use an iterative rule inference approach to extract
PRGs from API source code, i.e., contrary to other approaches they do not require any
client code of the API. Similarly, Nguyen et al. use a graph-based object usage model
(Groum) for their tool GrouMiner [Nguyen et al. 2009]. However, their graph addition-
ally contains data and temporal dependencies between method calls as well as control
structures. GrouMiner is used to automatically document specific protocols of inter-
play between multiple objects. In a follow-up work, they introduce GraPacc [Nguyen
et al. 2012] to use Groums extracted by GrouMiner for code completion.

Buse and Weimer use data-flow analysis to extract single type usages [Buse and
Weimer 2012]. They assume that a single type may have multiple common use-cases.
They apply clustering to discover and merge related single-object usage patterns and
generate human-readable documentations of these patterns.

Other work by [Hindle et al. 2012] shows that source code contains regular and
predictable utterances, similar to natural languages. They apply n-gram based tech-
niques on program tokens to learn statistical models of programs. Their experiments
prove that it is possible to predict potential tokens. Compared to our approach, they
are not limited to code completion of method calls. However, this generalization results
in a lower prediction quality.

The system proposed by Heinemann et al. recommends methods to a developer that
are relevant in the class currently under development [Heinemann et al. 2012]. This
is achieved by identifying the loopback of n preceding identifiers that occur in front of
a method call. Queries to the system contain the preceding identifiers in front of the
cursor. The recommendations are then inferred by matching them against the model.
The intentions and knowledge of the developer, expressed in the identifiers, are used
to learn the models in this approach, instead of using structural information.
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7. FUTURE WORK
This paper evaluated different types of context information (i.e., receiver call sites,
definition sites, etc.). However, there is other information that could also be used (e.g.,
the current package name, identifiers of variables, comments inside the analyzed code,
etc.). Future work should include more information and analyze the effect on model
size, inference speed, and prediction quality.

This paper showed that parameter call sites and the enclosing class context do not
contribute much to prediction quality. However, this information could be crucial to
find the right proposals for some types. Consider a method that takes two parameters
of the same type and that copies contents from the one object to the other. In order to
distinguish both objects, it is necessary to have the parameter information. It seems
that a general decision about which context information are in- or excluded for learn-
ing is too coarse-grained. Instead, future work should improve the feature selection
process and analyze if it is possible to answer this question on a lower level. As a first
step, the importance of all context information should be evaluated per object type.
The next step could be selecting the most helpful context information only, e.g. include
only some parameter sites and exclude the rest.

Although parameter call site information is not very effective in terms of increasing
prediction quality, it could be used to provide a new engine to recommend parameters
to method calls. Such an engine was already proposed [Zhang et al. 2012]. Future
work could compare both approaches and analyze whether the previous approach could
benefit from extended contexts as proposed in this paper.

This paper introduced a clustering approach for PBN. However, the clustering ap-
proach could be replaced by more sophisticated machine learning techniques. For ex-
ample, the machine learning algorithm could detect and remove outliers in the data
set to further improve prediction quality. Future work could also leverage the fact that
there are high correlations between some information to further reduce the model size.
For example, if two method calls are always observed together, it is not necessary to
include them separately in the model. Merging or removing these correlating infor-
mation will most likely have a beneficial effect on the prediction quality, because this
simplification also removes noise from the data.

The different scenarios and configurations (e.g., clustering thresholds) evaluated in
this paper provided an overview of the average quality for all SWT widgets. However,
the selection of the appropriate thresholds was only based on experiments with a single
type because we assumed that it is the same for all types. Future work should analyze
this assumption, because it might be beneficial to select the threshold per type instead
of defining it globally.

Both BMN and PBN assume that the developer can decide in which order completed
methods have to be used. Therefore, both do not consider the ordering information. We
think that this information is important and we want to consider it in future work.
However, we feel that the information cannot be meaningfully integrated in a sim-
ple call completion recommender because it cannot be considered in separation from
control structures. Instead, it seems more promising to extend works on snippet com-
pletion to support ordering, like GrouMiner [Nguyen et al. 2009].

The state-of-the-art evaluation methodology for code completion systems uses ar-
tificially generated queries. This automatic method is much better than approaches
that qualitatively evaluate a small number of manually selected completion scenarios.
There is no empirical evidence, which shows that artificially generated queries faith-
fully mimic real code completion events. Ideally, the evaluation should use implicit
feedback of developers as ground truth that is collected during real usages of a code
completion. An evaluation would then compare the collected data with the propos-
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als of the code completion system. The results can be used to validate the evaluation
methodology (i.e., evaluation with artificial queries) or to propose a valid alternative.
However, major effort is necessary to collect such a data set.

All evaluations of this work were based on code completion for the SWT framework.
However, the proposed algorithm is applicable to other frameworks too. By analyz-
ing new frameworks as subjects for the experiments, future work could identify cases
in which the approach could be further improved. Additionally, other work already
pointed out the necessity of diversity in software engineering research [Nagappan et al.
2013]. We already sketched how this finding could be be adopted to recommender sys-
tems in software engineering [Proksch et al. 2014]. Future work should validate the
representativeness of the results of this work for different datasets.

We have already discussed limitations of the static analysis, e.g. the pruning of
exception-handling edges. Future work can reduce these limitations and increase the
precision of the static analysis. Context information could be extracted that is cur-
rently ignored to distinguish usage scenarios that are currently indistinguishable.

8. CONCLUSIONS
This work presented advances the state of the art in intelligent code completion sys-
tems in three ways: (1) We extended the static analysis of the best-matching neighbor
approach (BMN) and extracted more context information. (2) We introduced a new ap-
proach for intelligent code completion called pattern-based bayesian network (PBN),
which uses extended context information. (3) We extended the state of the art method-
ology for evaluating code completion systems.

The summary of technical contributions in comparison to BMN is as follows. Both
BMN and PBN approaches learn typical usage patterns of frameworks from data,
which is extracted by statically analyzing source code repositories. Unlike BMN that
uses a table of binary values to represent usages of different framework types in client
code, PBN encodes the same information as a Bayesian network. A major technical
difference is that PBN internally stores floating point values in multiple conditioned
nodes, whereas BMN stores binary values in a table. A key consequence of this dif-
ference is that PBN allows to merge different patterns and to denote probabilities -
instead of boolean existence - for all context information and method calls. Therefore,
a direct mapping between extracted usages and created patterns is no longer neces-
sary. We introduced a clustering approach for PBN that leverages this property and
enables to trade-off model size for prediction quality. It is not clear how such a cluster-
ing could be adopted for BMN, because its binary representations does not allow for
representing clustered results.

This paper makes important contributions to the evaluation methodology of intel-
ligent code completion engines. We argued that in addition to prediction quality, two
other criteria ought to be considered: Memory needs for storing extracted models and
the inference speed. To get meaningful results, it is also necessary to evaluate how well
the results scale with an increasing input size. In the paper, we presented an extensive
evaluation that uses all the above criteria to compare both approaches.

We used the additional context information and evaluated the impact. Our results
have shown that not all contribute equally to the prediction quality; the definition is
the most valuable context information with an increase in prediction quality of about
0.03. But at the same time, definitions significantly increase the model size. We found
that using parameter call sites and the class context does not pay off in terms of model
size. The prediction quality increases marginally, but this is disproportionate to the
increased model sizes.

We have shown that BMN+D and (unclustered) PBN0+D exhibit very similar predic-
tion quality in all experiments, but each approach has its own advantages and disad-
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vantages. Their model sizes scale differently: the BMN tables are small for small input
sizes and the network structure of PBN creates an overhead. However, model sizes of
PBN scale better with the input size (logarithmic scaling for PBN, linear scaling for
BMN). For input sizes of less than ⇠ 15, 000 usages, speed is not an issue for both ap-
proaches, even though PBN is already significantly faster than BMN. If the input size
gets larger, PBN excels with a very high inference speed. With an input size of 40, 000
usages, both approaches have similar model size and prediction quality, but PBN is 10
times faster than BMN. In the code base used for our experiments we did not observe
that many object usages for most of the types. However, these scaling properties might
be of relevance for future work, when more data is available - and therefore more object
usages are extracted - or when more context information is used.

We have shown that both the model size and the inference speed improved signif-
icantly for the clustered instances of PBN. It is possible to control the trade-off be-
tween model size and prediction quality by configuring the threshold of the clustering.
Conservative clustering (PBN15+D) can save ⇠ 50% of the model size with negligible
impact on the prediction quality. A moderate clustering (PBN40+D) saves ⇠ 90% model
size with a loss of prediction quality of ⇠ 0.03. An aggressive clustering (PBN60+D)
comes close to the minimal model size of a purely statistical model, but also exhibits a
decreased prediction quality of ⇠ 0.1.

In the end, we would like to emphasize that PBN is not bound to a specific machine
learning approach. It is an extensible inference engine for intelligent code completion
systems. In the future, we hope to see other researchers using it, extending it, or cre-
ating networks for it with more sophisticated machine learning techniques.
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