Interprocedural Graph-based
Object Usage Model Generation for
Detecting Anomalous Usage of
Cryptographic APIs

Generierung interprozeduraler, graph-basierter Objektverwendungsmodelle zur
Detektierung fehlerhafter Verwendungen kryptographischer APIs

Manuel Fabian Benz (Master of Science Informatik, Master of Science IT-Sicherheit)

Technische Universitat Darmstadt
Department of Computer Science
Software Technology Group

Examiner: Prof. Dr.-Ing. Mira Mezini
Supervisor: Sven Amann, M.Sc. and Dr. Karim Ali, Ph.D.

Submission Date: 20.10.2016

TECHNISCHE
UNIVERSITAT
DARMSTADT

Eidesstattliche Erklarung

Hiermit erklare ich, dass ich die vorliegende Masterarbeit selbststindig angefertigt habe. Es wurden nur
die in der Arbeit ausdriicklich benannten Quellen und Hilfsmittel verwendet. Wortlich oder sinngemaf}
iibernommenes Gedankengut habe ich als solches kenntlich gemacht. Die Arbeit hat in gleicher oder

dhnlicher Form noch keiner anderen Priifungsbehorde vorgelegen.

Darmstadt, den 20.10.2016

Manuel Fabian Benz

Abstract

English

Security of modern applications is oftentimes flawed due to incorrect usage of cryptographic APIs. Re-
searchers have shown that such incorrect usages can automatically be identified using graph-based ap-
proaches to detect API usage anomalies. However, these approaches suffer from large amounts of false
positives. We have conducted experiments that aim at detecting such API usage anomalies in Android
applications utilizing the Java Cryptography Extension (JCE). After manual investigation, we were able
to identify 70% of the detected anomalies as false positives caused by the intraprocedural nature of the
graph model. This thesis proposes an approach for generating interprocedural graph models of library
usage by inlining method calls on the graph level. For this purpose, an augmentation of the previous
model that carries necessary information for the inlining process is presented. Furthermore, several
heuristics which allow for fine-grained selection of methods that should be inlined are introduced and
evaluated. Our experiments on 50 Android applications utilizing the JCE show that the interprocedural
model yields a reduction of those false positives by up to 42.86% with an overall reduction of detected
anomalies by 30.37%.

Deutsch

Eine héufige Ursache fiir mangelnde Sicherheit in modernen Anwendungen ist der Missbrauch von kryp-
tographischen APIs. In der Vergangenheit konnte gezeigt werden, dass Graph-basierte Verfahren gut
geeignet sind, um die Verwendung solcher APIs zu modellieren und dadurch Fehlverwendungen au-
tomatisch zu erkennen. Diese Verfahren weisen jedoch héufig eine grofle Anzahl an False Positives
auf. Um deren Ursache zu identifizieren, fiihrten wir eine Reihe von Experimenten mit Android-
Anwendungen, die die Java Cryptography Extension (JCE) verwenden, durch. Dabei wurde deutlich,
dass mit ca. 70% der grof3te Teil dieser Missklassifizierungen durch die ausschlief3lich intraprozedurale
Modellierung der Graphen entsteht. In dieser Arbeit wird ein Ansatz prasentiert, der es ermoglicht,
stattdessen eine interprozedurale Reprasentationen dieser Graphen durch das Inlinen von Methoden auf
der Graphen-Ebene zu realisieren. Dafiir wird eine Erweiterung des vorherigen Modells eingefiihrt, die
die Graphen um die fiir das Inlinen notigen Informationen ergidnzt. Des Weiteren werden verschiedene
Heuristiken vorgestellt und evaluiert, die es ermoglichen, nach spezifischen Kriterien zu entscheiden,
ob eine Methode geinlinet werden soll. In unseren Experimenten mit 50 Android-Anwendungen, die
die Java Cryptgraphy Extension benutzen, konnten wir zeigen, dass es mit Hilfe des interprozedu-
ralen Modells moglich ist, die Anzahl solcher False Positives, die tatsdchlich auf die intraprozedurale
Modellierung zuriickzufithren sind, um 42.86% zu verringern und dabei auch die Gesamtmenge der
gemeldeten Fehlverwendungen um 30.37% zu reduzieren.

Table of Contents

1. Introduction

1.1. Research QUESLIONS v v v v et e e e e e e et e e e e e e e e e e e

1.2. Thesis Structure .

2. Related Work
2.1. API Misuse

2.2. Pattern-based Anomaly Detection

3. Overview
3.1. GROUMs
3.2. Patterns
3.3. Anomaly Detection
3.3.1. Intra- vs Int

4. Interprocedural GROU
4.1. Inling GROUMs vs

erprocedural GROUMS ittt it

Ms
Methods o o i e e e

4.2. Extended GROUMSt ittt e e e e e e e e e e e
4.2.1. Advanced-Edges

4.3. Inliner

4.3.1. Inline HeuristiCs v v v v v i e e e e e e e e e e e e e e e

4.3.2. Inline Tree
4.4, Virtual Callsites .

5. Implementation

5.1. Extended GROUMSt it ittt e e e e e e e e e e e e e
5.1.1. Dependency Manager v v v v v vt it et e e e e e e e e
5.1.2. GROUM Input/OUtpUL v v v ittt it e e e e e e e e et et e e e
5.1.3. GROUM OptimizatiOns ¢ v v v vttt e e e e e e e e e e et e e e e e e e e

5.2. Inlining Infrastructure i v i i i e e e e
5.2.1. InlineBuilder
5.2.2. GroumlInliner e e
5.2.3. LookupProvider. i i e e e e e e e
5.2.4. InlineHeuristicC i e e e

5.3. Call-Graphs
5.4. TestCases

5.4.1. Interprocedural Pattern Usage Filter

6. Evaluation
6.1. Setup
6.2. Constructed Tests

O O N U1 n

1"
11
12
12
15
18
20
20

23
23
23
24
25
25
25
27
28
30
30
30
31

32
32
32

6.3. Real World Tests o it e 36
7. Conclusion 42
List of Figures 45
References 46
A. Appendix 49

W

1 Introduction

Previous research shows that misuse of cryptographic APIs is a common problem and oftentimes the
cause for security vulnerabilities in software products [EBFK13, ANA*15, GIJ*12, LCWZ14, ANN'16].
Correct usage of such APIs generally includes the proper invocation of API methods, i.e., passing
valid and consistent arguments [EBFK13, ANA*15], as well as proper ordering of API method invo-
cations [NKMB16]. When using the Java Cryptography Extension (JCE) API, for example, it is essential
to correctly initialize the Cipher object to use a (properly configured) secure cryptographic algorithm.
Listing 1.1 shows such a correct initialization for an AES algorithm in encryption mode. Note that
a lot of JCE providers will default to the Electronic Code Book Mode (ECB), which is considered in-
secure, when invoking Cipher.getInstance(...) without the specification of any block cipher mode of
operation [EBFK13, ANA*15].

Nguyen et al. [NNP"09] presented Graph-based Object Usage Models (GROUMs) as a means to model
invocations on Java objects, including their order, control and data dependencies. Figure 1.1 shows the
GROUM as generated by their approach for the example in Listing 1.1. They employ frequent subgraph
mining [EKKB10] to learn usage patterns from example code and use these to detect anomalous usage
of Java APIs by matching them against their GROUMs. We adapted their approach and implemented
our own toolchain (the Cryptominer) for GROUM generation, pattern mining and anomaly detection,
specialized (but not exclusively) on cryptographic APIs.

Cipher.getlnstance

(Cipher.init) (String.getBytes)

public byte[] enryptAES(SecretKey secretKey){
// Passing just "AES" here would default to ECB mode
Cipher cipher = Cipher. getinstance ("AES/CBC");
cipher.init (Cipher .ENCRYPT MODE, secretKey);
byte[] ctBytes = "ClearText".getBytes();
return cipher.doFinal(ctBytes);

Cipher.doFinal
Listing 1.1: AES encryption in CBC mode.

Figure 1.1.: GROUM for AES encryption.

In our experiments with the Cryptominer on 50 Android applications using the JCE, we found that a
large fraction of detected anomalies are false positives, i.e., a GROUM only matches parts of a pattern
indicating a violation while the target GROUM actually models correct usage. Others experienced similar
results [NNPT09, EHO7, Han05]. After manual inspection of 65 of the 208 detected anomalies, we
were able to identify that 70% of those are caused by the separation of object usages over multiple
GROUMs, i.e., parts of a pattern are present in one GROUM while the remaining parts are split over
others. This happens when a programmer outsources parts of API usage in helper methods (subroutines)
to encapsulate code for use in multiple locations or to improve readability. This has been observed by
other before and is a general shortcoming of intraprocedural mining methods [LZ05, Lin07]. Nguyen et
al. [NNN16] also showed that while there is a lot of semantic repetitiveness in code over a multitude of

1

projects, it is oftentimes split differently over several subroutines and the subroutines are used repeatedly
in different locations of the code. When thinking in terms of object usages, this means that there are
a lot of semantically equivalent usages split differently among several methods. This greatly supports
our findings and directly motivates the need for an interprocedural approach for GROUM generation to
lower the high false positive rate during anomaly detection. In this thesis, we present such an approach
that is able to systematically build GROUMs of methods, including the called subroutines and still keep
the semantics of the original code by inlining methods on the graph level. For this purpose, we introduce
an extension of the GROUM model that has a more sophisticated way of modeling data dependencies
inside and between methods and, thus, not only allows for a graph-based inlining, but also renders the
model more precise in its representation of the original code. Furthermore, we present several inline
heuristics that allow for a use-case-based selection of callees for the inlining. For example, the inlining
process can be restricted from inlining API internals by explicitly avoiding such with a white-/blacklist
approach. As another example, the inlining might be restricted to just a few levels of the call-hierarchy
to restrict the size of the interprocedural GROUMs when using those for the pattern mining.

1.1 Research Questions

In the following the main research questions of the thesis are presented. Theses will be discussed
throughout the thesis and answered in Chapter 7.

* Is interprocedural GROUM generation able to reduce false positives caused by the separation
of object usages over multiple methods?
Anomaly detection using the intraprocedural model suffers from a large amount of false positives
caused by the separation of object usages among several methods. Proper techniques for interpro-
cedural GROUM generation have to be designed, implemented and evaluated for their potential of
reducing such false positives.

* How does interprocedural GROUM generation impact the detection of true positives and
other false positives?
A method might contain true positives or false positives that are not caused by the separation of
object usages. When used in multiple other methods, building interprocedural GROUMs for those
might lead to redundant detection of anomalies. It has to be evaluated how the reduction of false
positives and the increase (through redundancy) trade off.

* What are possible strategies for interprocedural GROUM generation? How can the genera-
tion of such interprocedural GROUMs avoid including API internals?
The original GROUM model captures library usages, such that the anomaly detector can learn us-
age patterns. If we would transitively analyze every callee, all method invocations would disappear
from the model and the detector would not learn from any library-usage examples. Furthermore,
additional false positives might appear in the anomaly detection step since GROUMs would no
longer model library usages, like the patterns, but rather their internals. Therefore, an approach
that captures usages for the interesting APIs, but transitively analyzes all others is needed. The
tradeoff between expanding and reducing the scope of the interprocedural analysis has to be eval-
uated.

1.2 Thesis Structure

The remainder of this document is organized as follows. Chapter 2 gives an overview of related work.
Chapter 3 presents fundamental background knowledge and basic terminology as a basis for the thesis.
Chapter 4 provides detailed information about our approach of generating interprocedural GROUMs on a
conceptual level. Chapter 5 explains the implementation of this approach. Chapter 6 shows and discusses
the results of the conducted experiments. Finally, in Chapter 7 we summarize the main contribution of
this thesis and discuss its limitations, as well as possible future work.

2 Related Work

In this section a brief overview of related work to the thesis’ topic is given.

2.1 APl Misuse

The general need for analyzing Android applications for the misuse of cryptographic APIs originates from
several studies made by others. Egele et al. [EBFK13] propose an automated approach that employs static
program slicing to identify flows between cryptographic data, such as keys and initialization vectors, and
the cryptographic operations to identify flaws in the usage of cryptographic APIs. They propose six
rules that, when violated, indicate flaws in data flow between those elements. In their experiments
on 11.748 Android applications, they found that 10.327 (88%) of those applications have at least one
flaw in their usage of cryptographic APIs. Based on this and other publications, Nadi et al. [NKMB16]
empirically investigated the reasons why developers struggle with the usage of those APIs. Results from
their survey of 48 developers show that while developers are generally confident in selecting the correct
cryptographic means for their tasks, such as encryption, signing, they often struggle with applying the
concrete cryptographic algorithms correctly. Furthermore, they identified that developers oftentimes find
the APIs to be too low-level and modular, i.e., allow for too much configuration freedom and, thus, for
introducing misconfigurations. For those reasons we want to support developers in the usage of the APIs
and present Cryptominer as a means to automatically detect and report misuses of such.

2.2 Pattern-based Anomaly Detection

Wasylkowski et al. [WZLO07] present JADET, an approach for mining object usage models in Java meth-
ods as sequences of method calls. The approach is constraint to modeling object usage examples of a
single object, i.e., each type of object needs its own representation. They use means of frequent itemset
mining [HanO5] to extract patterns of frequent object usages from their model and use those patterns to
detect anomalous API usages in code. In their case-study on the ASPECTJ! library, 790 violations were
detected from which they classified 96 (12.2%) true positives and the remaining 694 (87.8%) as false
positives. Building on the insights of Wasylkowsky et al., Nguyen et al. [NNP*09] presented so-called
Graph-based Object Usage Models (GROUMs) that allow for modeling multiple object usages in Java
methods as directed acyclic graphs. They employ frequent subgraph mining methods to extract patterns
of frequent object usages from GROUM sets of various applications. With the help of those patterns, they
are able to find anomalies in the usage of certain APIs. In their experiments on the ASPECTJ library, they
detected 244 anomalies from which they manually checked 15 which led to 3 true positives (20%) and
12 false positives (80%). The minimal observed false positive rate in their experiments is 62.5% for the
Fluid project. With Cryptominer, we build upon their findings and adapt their GROUM model to detect
cryptographic API misuses in Java code to eventually guide the developer through the usage of such
APIs. In our experiments on Android applications using the JCE, we observed that 70% of anomalies
are caused by the intraprocedural nature of the model, which motivated the need for an interprocedural
approach.

1 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

3 Overview

In this chapter, the structure of GROUMs is explained more thoroughly. Furthermore, basic terminology
is provided, as well as other fundamentals, which are important when further processing through the
thesis.

3.1 GROUMs

To understand the problems and procedures of generating interprocedural GROUMs, it is necessary to
first build up a general understanding of their structure. We present our own implementation of the
GROUM model based on the original by Nguyen et al [NNP*09]. Contrary to their implementation
which uses abstract syntax trees (ASTs), we employ the Soot! Java optimization framework [VRCG'99]
for GROUM generation. This enables the generator to leverage code semantics in addition to the syntax
provided by ASTs. Furthermore, we extended the GROUMs to also capture constants that are used in
method invocations to be able to distinguish between correct and anomalous usages of the JCE, as it
makes heavy usage of constants for the configuration of API objects (e.g., Listing 1.1).

A GROUM is a directed acyclic graph (DAG) with a set of nodes and a set of edges as defined in
graph theory. It models control and data flow between method invocations on specific objects inside a
given Java method. ’Directed’ specifies that an edge from a node A to a node B is unidirectional, i.e.,
B can be reached by A but not the other way around. Furthermore, the acyclic property states that if
there is a path from A to B, i.e., a chain of directed edges from A to B containing an arbitrary number
of nodes, there must not be an edge back from B to A. DAGs provide an intuitive and sound way to
model a method’s control and data flow, i.e., both, with the exception of loops, propagate downwards
through the inspected method and thus fulfill the directed and acyclic properties of the graph. Loops
constitute a special case since they allow data and control to flow backwards at some point. Since a
lot of frequent subgraph mining algorithms cannot handle those backward edges, they are omitted in
the GROUMs [NNP*09, EBFK13]. This does not hurt soundness with regards to pattern mining or the
anomaly detection since it is enough to model scope and existence of a loop in the GROUMs. For example,
in Figure 3.1 there is an edge from the LOOP node to the RETURN node which models the control flow
when the loop is not taken, furthermore, there is a path between those nodes over Example.bar which
models the flow through the loop, thus, existence (LOOP node) and scope (every node between LOOP
and the merge point of both outgoing paths) are implicitly represented by the GROUM.

The node and edge types of our model are a slight variation to those defined by Nguyen et al. [NNP*09]
and tailored towards the analysis of cryptographic libraries. The following types are part of the model:

Action nodes
Model the invocation of a constructor or method of a specific object. The label of an action node is
C.m, where C is the class name of the target object and m the method name.

Control nodes
Represent branching points of control structures like if-else blocks or while/for loops.

1 https://sable.github.io/soot/

https://sable.github.io/soot/

publéc byt.e[] encrypt (SecretKey secretKey) throws public Cipher getAESGipher() {
tryxc{eptlon { String aes = "AES/CBC";
t Cipher. getlnst ;
Cipher cipher = getAESCipher(); ¥ return Cipher. getinstance (aes);
cipher.init (Cipher .ENCRYPT MODE, secretKey);
byte[] ctBytes = "ClearText".getBytes(); Listing 3.2: AES Cipher factory method.

return cipher.doFinal(ctBytes);

} catch (NoSuchAlgorithmException e) {
e.printStackTrace () ;

} catch (NoSuchPaddingException e) {
e.printStackTrace () ;

public void control() {
String a = getString ();
if (a.equals("foo"))

foo () ;

th . >
y row €; while (a.equals("bar"))

return null;) bar(a);

}

Listing 3.1: AES encryption with exception handling. Listing 3.3: Control structures.

(Example. getSlring)
java.lang.String.equals

[

Example.bar

Figure 3.1.: GROUM for Listing 3.3.

Constant nodes
Model literal constants (such as string or integer constants) and are especially important in the

context of cryptographic APIs.

Entry nodes
Represent the entry point of a method.

Exit nodes
Model the exits of a method and can be either a RETURN (regular exit) or THROW (exceptional

exit) node.

Edges
Model either control flow or a data dependency between two nodes. Contrary to the implementa-
tion of Nguyen et al. [NNP*09], a data dependency between two nodes A and B is only represented
by an edge if the statement modeled by A defines a variable (or constant) that is then later used as
calling target or parameter by the statement represented by B.

Figure 3.2 shows the GROUM for the AES encryption example in Listing 3.1 as generated by our
toolchain before the augmentations (see Section 4.2) we had to make for the process of building inter-
procedural GROUMs. Action nodes are shown as rectangular nodes with rounded edges, constants are
shown as rectangular nodes, and exit as well as entry points are visualized by elliptical nodes. Depen-
dency edges are visualized as dotted edges to have a clearer optical distinction, while there is actually no
semantic distinction between those and control flow edges in the model. Note that there is always just
one edge between two nodes and, thus, some edges model control and data flow, e.g., the edge between
getAESCipher and javax.crypto.Cipher.init.

It has to be also noted that there is an edge modeling control flow for every statement inside - and
right before - the try-block to the first statement of every catch-block. These edges are derived from
Soot’s ExceptionalUnitGraph which models the regular and exceptional control flow between Jimple units
(statements). It might seem a bit counterintuitive to also have an edge from the statement right before
the try-block to its handling catch-block. This is due to the way Soot models exceptional flow: Every
statement preceding a statement that might throw an exception has an edge to the exception-handler.
If the throwing statement can have side effects, there is also an edge to that handler. This is the case
since the statement right before the throwing statement may actually be the last one executed before the
exception-handler, or, if the throwing statement has side effects, it might have been executed partially.
Since Soot’s throw analysis, which generates the ExceptionalUnitGraph, is not precise in deciding which
exact statement inside the try-block actually throws an exception, and every statement is a method
invocation — hence has side effects — the preceding statement and every statement inside that block is
assumed as a potential last statement before execution of the exception handler. We suggest having a
look into Arni Einarssons and Janus Dam Nielsens Survivor’s Guide to Soot? for further information on
Jimple and Soot’s control flow graphs.

3.2 Patterns

We employ the ParSeMiS® frequent subgraph mining framework to mine patterns of frequent object usage
in a set of GROUMs. A pattern is a GROUM or sub-GROUM that occurs frequently, i.e., with a frequency
higher than a given threshold, in a set of GROUMs and is likely to model the correct usage of some library
(or, more generally: correct interaction of Java objects) due to its frequent usage [NNP*09, Wer07].
Figure 3.4 shows a pattern which models encryption with the help of a Cipher objects, as mined from
a set of GROUMs using the JCE. Again, there is no distinction between data and control flow edges,
neither during nor after the mining. Nevertheless, the miner does consider edge labels when matching
edges albeit the GROUM model does not use any. Furthermore, a node’s type is not considered during
mining, only its label.

2
3

http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://www2.informatik.uni-erlangen.de/EN/research/zold/ParSeMiS/index.html

http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://www2.informatik.uni-erlangen.de/EN/research/zold/ParSeMiS/index.html

getAESCipher

Y

"ClearText" [Javax crypto.Cipher. mn

", | java.lang.String.getBytes

Qavax.crypto.Cipher.doFinal]

Gava.security.NoSuchAlgorithmExceplion.prinlStackTrace] @

N

null

Javax crypto.NoSuchPaddingException. pnmStackTrace]

Figure 3.2.: GROUM for Listing 3.1.

@ " AES/CBC"

5
Gavax.crypto‘Cipher. getlnstance)

1 Gavax.crypto.Cipher. getInstance)

javax.crypto.Cipher.init

»
Gavax.crypto‘Cipher. doFinaI)

Figure 3.3.: GROUM for Listing 3.2. Figure 3.4.: Pattern for javax.crypto.Cipher usage.

"AES/CBC"

5
Gavax. crypto.Cipher. getlnstancej

"ClearText"

javax.crypto.Cipher.init

java.lang.String.getBytes

A
Gavax.cryplo.Cipher.doFinalj

/

Gava.security.NoSuchAlgorithmException. prinlStackTracej

null Gavax.cryplo.NoSuchPaddingExceplion. primSlackTraceD

Figure 3.5.: Interprocedural GROUM for Listings 3.1 and 3.2.

3.3 Anomaly Detection

After the mining of a pattern, the pattern can be used to detect anomalies in a set of GROUMs. The
GROUM which is used to match the pattern against, is usually called the target. If the number of match-
ing nodes between target and pattern exceeds a certain threshold, the match is called an occurrence.
For example, if the pattern contains four nodes and the threshold is 50%, the pattern and target have
to have at least two nodes in common so that the overlap is considered an occurrence. This threshold
is also called minimal overlap. If an occurrence was found and it does not match the whole pattern,
i.e., some node or edge of the pattern is missing in the target, it is considered a violation of the pattern
and thus an anomaly in usage of the object relation modeled by the pattern. For instance, if a target
matches every node of the pattern in Figure 3.4 except for one node, an occurrence of the pattern is
found, furthermore, it is violated because of the missing node and thus an anomalous use of JCE-Cipher
has been detected.

Note that setting the threshold too low leads to large numbers of violations (usually false positives).
These are caused by minimal overlaps between pattern and target. Commonly used objects or methods,
like NullPointerException or System.out.println(..), will oftentimes lead to such false positives. It is crucial
to adjust the threshold so that the amount of false positives is low, while still detecting small, i.e.,
consisting of just a few nodes, flawed object usages.

3.3.1 Intra- vs Interprocedural GROUMs

Consider the GROUMs in Figures 3.2 and 3.3 (further on, referred to as G1 and G2), where the latter
models the getAESCipher factory method (Listing 3.2) used in the former. When using both as targets
for the anomaly detection with the pattern in Figure 3.4 to match against, the detector will report one

9

violation of the pattern for each of the GROUMs. Firstly, the javax.crypt.Cipher.getInstance node is missing
in G1 and, furthermore, G2 is missing all three other nodes to conform to the pattern. Since the object
relation modeled by the pattern actually exists in the code — albeit distributed among two methods — it is
obvious that both of the reported anomalies are false positives which are caused by matching targets and
patterns on an intraprocedural level. To mitigate false positives caused by this, means to build GROUMs
on an interprocedural level are needed. While building those interprocedural GROUMs, it is important
to keep the semantics of the original code to not introduce additional anomalies, or, even worse, hide
existing ones. To eliminate the two false positives for the previously given example while still keeping
semantic soundness, an interprocedural GROUM for Listings 3.1 and 3.2 would look like the one in
Figure 3.5. We propose an approach that is capable of this in the following section.

10

4 Interprocedural GROUMs

In this chapter, the approach we developed to build interprocedural GROUMs is explained on a concep-
tional level. Furthermore, necessary augmentations to the existing GROUM model are provided.

4.1 Inling GROUMs vs Methods

When constructing interprocedural GROUMs, there are basically two major, but inherently different,
approaches: Working on the source code level or working on the GROUM level. When doing the former,
one could, for example, use an already existing Java bytecode inliner to inline the methods at the source
code level before using the Cryptominer to extract the GROUMs. Or, furthermore, one could design an
interprocedural code analysis with the Soot framework that uses the already existing intraprocedural
analysis — used for GROUM generation — and build the interprocedural GROUMs on-the-fly. The latter
approach involves replacing nodes by the corresponding GROUMs on the level of the GROUM model,
which will further on be referred to as GROUM inlining.

All approaches have their benefits and shortcomings. Inlining on a Java bytecode basis has the big
advantage that there already exist proper tools for the purpose, and even Soot does provide some inlining
facilities out of the box [ABO5, VRCG"99, BCF*99, SHR*00]. Furthermore, bytecode inlining seems to
be the most generic approach and most robust against changes of the GROUM model. The big drawback
here is that there are strict rulings that might interfere with what is possible in the context of GROUMSs
and GROUM-based pattern matching. For instance, most of the tools just inline monomorphic calls, i.e.,
calls that can have only one possible target object at runtime [BS96]. This is because monomorphic
calls can be resolved unambiguously, in contrast to polymorphic calls which can have multiple possible
receiver objects of a method call. Furthermore, these tools mostly consider performance, code size or call
frequency when deciding if a method should be inlined [CLO6, SCWK13, AFSS00], which makes sense
in the context of code optimization since inlining too much could bloat the code and greatly increase the
program’s size with a minimal performance benefit. Lastly, those tools do not provide sufficient potential
for extension which, foremost when deciding when to inline, is of high relevance for the purpose of
interprocedural GROUMs. Since the aim when building interprocedural GROUMs is the elimination
of false positives during the anomaly detection step, usual code inlining heuristics seldom provide the
necessary metrics. For example, the decision if a method should be inlined should rather depend on it
using the API of interest, or, more generally, if the inlining is able to reduce false positives during anomaly
detection, than on its size or number of calls during the program’s execution. Using an interprocedural
code analysis in Soot to augment the already existing intraprocedural builder would be a more flexible
approach. One of the biggest benefits here is the ability to use the Soot framework and all its capabilities
when doing the inlining, e.g., mapping of parameters from caller to callee is basically there out-of-the-
box, or, the call-graph is available and do not has to be serialized for later processing. Beyond this, the
approach yields similar benefits as inlining GROUMs on the graph level. While inlining directly on the
GROUM model does not provide the stated benefits of the other approaches, it does provide the most
flexibility since an inliner can be tailored to the needs of GROUM inlining with respect to pattern mining
and anomaly detection, e.g., inlining a GROUM only if the result would lead to a decrease of anomalies
detected in it. Furthermore, inlining on the GROUM level ensures that only units of interest are handled.

1

In contrast, inlining on the bytecode level would process everything that is not captured by the GROUM
model and thus would introduce unnecessary overhead. Last but not least, such an inliner has the benefit
that existing GROUM databases can be used as target for inlining and thus the source — and multiple
comparably expensive GROUM generation runs — are not needed. This gives great flexibility in handling
GROUMs e.g., keep, compare or mix intra- and interprocedural GROUMs of existing GROUM databases.
Because of the stated advantages and the lesser important disadvantages of GROUM inlining, focus of
the thesis is given to this apporach.

For the sake of readability, the GROUM that has nodes which are inlined will be referred to as master
and the "to be inlined" GROUMs as inlinees.

4.2 Extended GROUMs

To be able to inline GROUMs, it is necessary to augment the model to carry the necessary seman-
tics for such a task. Firstly GROUMs and their nodes have to be extended to carry the full signa-
ture of the modeled methods. While the pattern matching works on method names only, such as
javax.crypto.Cipher.doFinal(...), for the inlining it is important to be able to distinguish methods un-
ambiguously to inline the exact method when there are multiple overloaded versions. For the same
purpose, a GROUM itself needs to carry the signature of its modeled method. Besides supplementing
action nodes with the signature of the modeled methods, no other changes to the nodes are needed to
enable the inlining process. Another very important augmentation is the modeling of method parame-
ters, i.e., which parameters a method has and how these are used. This is necessary to correctly map
incoming data flow edges from the master to an inlinee with method invocations inside the inlinee. For
example, consider Listings 4.1 and 4.2 where multiple parameters are passed from the master to the
inlinee and further processed inside it. When inlining, it is necessary to know from which nodes the
parameters are coming from and which nodes are using them to correctly model the data flow. When
looking at the GROUM:s for the stated listing (Figures 4.1 and 4.2), it is obvious that there are no means
to reason which nodes should be connected in which manner besides the usual control flow. One does
not know if the getString node in the master does have the data dependency to the inlinee node because
of passing its returned value as the first or second parameter or if it is even used as receiver object of
the method call. It’s also unclear if the returned value of the inlinee is further used. When looking at
the inlinee, there is no information about the passed parameters at all. If the value returned by the
doSomething(...) method would be also the returned value of the inlinee, there would be at least a data
dependency edge from it to the RETURN node, but since the control flows the exact same way as the
data, data dependency edges are hidden by the control flow edges (the same is observed in the master).

In the following sections, the necessary extensions to the GROUM model are explained in detail. Note

that, while the augmentations are crucial for the effectiveness of the inliner, they also leave the model
more complete and less ambiguous compared to the previous, more simplistic one.

4.2.1 Advanced-Edges

The advanced-edges model introduces several new edge types that carry the semantics needed for GROUM
inlining. The two major edge types, namely control and data flow edges, are further subdivided as
follows:

12

public void master () {
String param = getString ();
String param2 = getOtherString();
String result = inlinee (param, param2);
print(result);

b

public String inlinee(String param, String
param2) {
doSomething (param) ;
return doSomethingElse (param2) ;

}

Listing 4.1: Master propagating values to/from
inlinee.

getOtherString |

inlinee

A A
print

Figure 4.1.: GROUM for Listing 4.1.

Listing 4.2: Inlinee that does
parameters.

something with

doSomething

doSomethingElse

Figure 4.2.: GROUM for Listing 4.2.

13

class Example {
public void exceptions () {
try {
foo () ;
} catch (NullPointerException e) {
printSomething () ;
} catch (Exception e) {
printSomething () ;
throw e;

}

Example.printSomething

b
b

Listing 4.3: Exception handling.
Figure 4.3.: GROUM for Listing 4.3.

Control Flow Edges

For the explanation of the new control flow edges model, consider Listing 4.3 and fig. 4.3. Note that
in our GROUM visualizations, control flow edges are always solid and data flow edges are dotted or
dashed.

Usage Order Edges model only the non-exceptional control flow and thus the intended usage order of
objects. They may branch on conditionals and merge again at some point (also including merge
points after exception handling like on the RETURN node). But besides that, there is always just
up to one incoming and/or outgoing usage order edge for any node. Usage order edges are drawn
as bold, solid lines in the visualizations. In Figure 4.3 non-exceptional control flows from the
EntryPoint node over the Example.foo node to the RETURN node. Also, if in one of the exception
handlers (which are only reached through exceptional flow), control flows normally again, e.g.,
from the Exmple.printSomething node to the THROW node.

Exceptional Flow Edges model the exceptional flow in a method, i.e., if some statement is inside a try-
block, an exceptional edge is inserted between that node and the first node of the exception handler.
Exceptional flow edges are shown as solid, non bold edges in the visualization. Considering the
example shown in Figure 4.3, there are four of these edges: one for every statement inside and
before the try-block to each exception handler.

Data Flow Edges

For the explanation of the new data flow edges model, consider Listing 4.4 and fig. 4.4.

Parameter Edges model that either the method modeled by the GROUM has a parameter which is then
further used, or that a node gets some variable or constant passed as argument. Note that the
term variable is not precise in this context since the argument does not necessarily need to
be held in an intermediate variable, but can also be passed in the same statement, e.g., writing
process(sl.concat(param), "Constant") instead, would produce the exact same GROUM.

Parameter edges hold the indices of the used parameters. These are visualized as edge labels,
formatted as x:y, where x is the index of the formal parameter of the modeled GROUM (in-index)

14

and y is the index of the parameter which is used when an argument is passed to a method modeled
by an action node (out-index). Both are zero-based, i.e., "0:1" models that the first parameter of
the GROUM is passed as second argument of a method call. The indices also allow for some special
cases: Is x = —1 and the edge’s source is an entry node; the modeled incoming "parameter" is
the this-reference that is implicitly passed to the method. Is x = —1 # y and the edge’s source is
not the entry node; the edge models the passing of a value that is returned by the edge’s source
node to the target node as y’th argument (e.g., the edge between java.lang.String.concat and
java.lang.String.compareTo in Figure 4.4). Another special case is y = —1 and y # x, this models
the case where a parameter of the GROUM is used as receiver of a method call (e.g., the edge
between EntryPoint and java.lang.String.compareTo).

Generally speaking, x = —1 models that the edge’s source returns a dependency, while y = —1
models that the edge’s target uses the dependency as receiver of a method invocation. Hence, the
this-reference is modeled as return value of an entry node, likewise, a constant is handled as if
it were the return value of a constant node. Furthermore, the exit nodes build another special
case. Having a parameter edge with y = —1 to a RETURN node means that the node returns the
dependency. Similarly, having an edge with y = —1 to a THROW node models that the dependency;,
i.e., an exception object, is thrown. One could also interpret this as if the exit nodes where method
calls with the dependency as receiver object.

Dependency Edges model the case where the edge’s source is the return value of a node and its tar-
get is the receiver of a method invocation. This edge implicitly models a parameter edge with
x = y = —1 as indices. The label is omitted here to improve performance during the pattern
mining and anomaly detection steps (no unnecessary string comparisons for the label). Exam-
ples for this edge type are: The edge from EntryPoint to Example.getString, modeling the use of
the this-reference as receiver of the call to Example.getString. The edge from Example.getString to
java.lang.String.concat, where the string returned by the former node is then used as receiver of the
concat method call. And lastly, the edge from java.lang.String.comareTo to RETURN, which models
that the value returned by the former node is returned by the method.

4.3 Inliner

In this section, the process of inlining is described on a conceptional level. Details on the inliner’s
implementation can be found in Section 5.2.

First, we introduce the term inline heuristic. An inline heuristic is a means to decide if a given GROUM
should be inlined. This is important because inlining every possible action node in a GROUM might
not always be desired. For example, if one wants to analyze object usages of a specific API, it might
be beneficial to just inline methods that actually use the API. See Section 4.3.1 for a more in depth
explanation of inline heuristics.

To build an interprocedural representation of a given GROUM - the master —, the inliner traverses
every node of it, determines if a GROUM is available for the method represented by the node, and
decides, based on the specified inline heuristics, if the node should be inlined. If so, the original node
and its incoming as well as outgoing edges are removed from the master. Further on, nodes of the inlinee
are inserted into the master, with the exception of entry and exit nodes since these model the interface
to the master and are only used to map edges of the master to the inlinee. Also, all edges between the
nodes of the inlinee are also added to the master. The master now contains an unconnected sub-graph
(or island) which essentially is the inlinee without its interfacing nodes.

15

AA

[Example. gelString) "Constant"

class Example {
public String dataFlow(String param) {
String sl = getString ();
String s2 = sl.concat("Constant");
return param.compareTo(s2);

b

b

Gava.lang.String.compareTo)
Listing 4.4: Data flow through method. n

Figure 4.4.: GROUM for Listing 4.4.

After the preliminary inlining step, the inlinee has to be connected to all nodes that were connected to
the original node. This is done edge by edge for every incoming or outgoing edge to or from the inlined
node. There are basically three situations that can occur: The edge of interest connects a node with an
inlinee, it connects an inlinee with a node, or the edge connects two inlinees (happens if two connected
nodes are inlined). Based on the case and edge type, different actions have to be taken to correctly insert
an edge to, from or between two inlinees:

Inserting edge from node to inlinee

Usage Order or Exceptional Flow Edge: The source node of the edge has to be connected to the first
actual node of the inlinee than can be reached through non-exceptional control flow, with a usage
order edge. This case is a rather trivial one because there is always only one non-exceptional
control flow edge starting from the entry node. Furthermore, for each exceptional successor of
the inlinee’s entry node, an exceptional flow edge has to be added from the original source to the
successor. This is the case because the original source node now is the last statement that might
have been executed before exception handling of the inlinee, just like the entry node was before
(see Section 3.1 for a recap on exception handling in GROUMs).

Parameter Edge: For each parameter edge originating from the inlinee’s entry node whose in-index (x;)
equals the out-index (y,,) of the original edge, a new edge has to be inserted from the original
source to the target of the inlinee’s parameter edge. Depending on the indices, a different type of
edge has to be inserted. If x,, = y; = —1, a dependency edge is inserted, otherwise, a parameter
edge with the specific in- and out-indices (x,, and y;) is inserted.

Dependency Edge: Since a dependency edge from one node to another models that the return value of
the source node is the receiver object of the call modeled by the target, the to-be-connected nodes
of the inlinee can only be calls with the this-reference as receiving target. Since the this-reference
of the inlinee is the same object as the one returned by the source node of the original edge, a new

16

dependency edge has to be created from the original source node to every node that is connected
to the inlinee’s entry node with a dependency edge.

Inserting edge from inlinee to node

Usage Order Edge: For each of the control flow predecessor of every non-exceptional exit node of the
inlinee (each node that is connected with a RETURN node by a usage order edge), there has to
be a usage order edge from this node to the target node of the original edge. This is because
non-exceptional control flow can leave the inlinee through every RETURN node.

Exceptional Flow Edge: Through the incompleteness of the GROUM model, it cannot be decided which
of the inlinee’s nodes can produce a specific exception or which type of exception is thrown by
a given THROW node. Hence, the inliner does insert an exceptional edge from each action node
of the inlinee to the exception handler of the master (target of the original edge). This is rather
an approximation than a precise step of inlining. For a more precise solution, the model has
to be extended so that THROW nodes, as well as exceptional flow edges, carry the actual type
of exception that is handled. Furthermore, it is necessary that the GROUMs also model implicit
exceptional flows, i.e., exceptions that are not explicitly thrown inside the method — through a
throw-statement — itself but are further passed upwards in the call-hierarchy. Nevertheless, there
will still be situations where only the stated approximation leads to sound results, e.g., catching of
runtime exceptions. Since a more elaborated approach to exception handling in GROUMs is out of
scope of this thesis and the importance of exception handling in the context of anomaly detection
is unclear, we consider this to be addressed in future work.

Parameter or Dependency Edge: Every returned dependency (action or constant node) of the inlinee
can be the source of the edge. Thus, every node that is connected to a RETURN node with a
dependency edge has to be connected to the target of the original edge with an edge of the same
type as the original edge. Note that there can also be the case that a parameter of the inlinee
is returned by it, which will further be referred to as loop-through. Detailed insights on loop-
throughs (and similar special cases) will be given in the following section.

Inserting edge from inlinee to inlinee

Usage Order Edge: For each control flow predecessor of every non-exceptional exit node of the source
inlinee, there has to be a usage order edge from it to the control flow successor of the target inlinee.
Furthermore, for each of the predecessors, there has to be an exceptional flow edge between them
and every node of the target inlinee that is connected through an exceptional flow edge to the
target’s entry node. This models the case where the target’s entry node might be the last executed
statement before the reach of an exception handler.

Exceptional Flow Edge: For each action node in the source inlinee, an exceptional flow edge is inserted
to the first non-exceptional control flow node in the target inlinee. This models the case where
the target inlinee is the first node in the exception handler of the master GROUM. The approach is
similar to the already stated approximation for exceptional flow edges.

Parameter Edge: This models the case where the source inlinee returns an object that used as argument
to the target inlinee. Hence, every returned dependency (action or constant node) of the source

17

inlinee has to be connected to every node that uses the corresponding parameter in the target
inlinee. Since by definition all returned dependencies have an in-index of x = —1, the type of the
edge depends solely on the out-index of the corresponding parameter edge of the target inlinee.
For example, the target inlinee has an action node that is connected by a parameter edge with
indices 0 : —1 (uses the first parameter as receiver object of method call) and the original edge
has indices —1 : 0, thus, every returned dependency of the source inlinee has to be connected to
the stated action node of the target inlinee by a dependency edge. Again, dependencies might get
looped-through, in fact, this might happen for both inlinees.

Dependency Edge: This case is also similar to the one for "node to inlinee". The only possible edge
targets in the target inlinee can be this-reference invocations and thus all returned dependencies
of the source inlinee have to be connected with a dependency edge to every action node of the
target inlinee that uses the this-reference (is connected with a dependency edge to its GROUMs
entry node).

Empty Methods and Loop-Throughs

There are also some special cases where the described methods do not work.

First, the inlinee might contain no action nodes, i.e., no method calls are conducted. This happens if
a method is empty (e.g., stub) or just returns some constant (see Listing 4.5). In such a case, the entry
node is directly connected to an exit node with an usage-order edge as shown in Figure 4.5. For this
example, after the preliminary inlining step, only the constant node will be left in the master. Connecting
it to the master can be handled like described before. Connecting an incoming or outgoing usage-order
edge to or from the inlinee, in contrast, need to be handled differently. Remember, there can only be
one outgoing usage-order edge for every action node but multiple incoming ones (since it might be the
merge-point of a preceding control structure). Hence, every non-exceptional control flow predecessor of
the inlinee has to be connected to the non-exceptional control flow successor of it, to keep control flow
sound for the interprocedural GROUM. If multiple connected inlinees do not contain action nodes, the
procedure has to be conducted successively until the inserted edge has an entry/exit node of the master
or any action node as source and target.

The second special case, a loop-through, occurs if a method returns one of its parameters on some path,
also including the this-reference (e.g., when implementing fluent interfaces in Java [Bod14, Fow05]).
Listing 4.6 and fig. 4.6 shows such a case. Again, the previously described methods for edge insertion do
not work here. Generally speaking, a parameter or dependency edge has to be inserted as if there were
no inlinee between two nodes. So there has to be a new edge inserted depending on the in-index (x,,;)
of the incoming edge to the inlinee and the out-index (y,,,) of the outgoing edge of the inlinee. This has
to be done for each incoming and outgoing parameter or dependency edge of the inlinee for which the
parameter or this-reference is looped-through. Furthermore, if multiple connected inlinees loop-through
variables, the procedure has to be conducted successively until the new edge has a non-loop-through
inlinee or normal node as source and target (at the extreme, this leads to connecting an entry and exit
node of the master).

4.3.1 Inline Heuristics

When conducting the inlining process, means to decide if a node should be inlined or not are needed.
If an action node can be inlined, i.e., a GROUM whose signature matches the one of the action node,

18

class Example {
public String emptyMethod () {
return "Constant";

"Constant"

}
¥

Listing 4.5: Method returning a constant.

class Example {
public String loopThrough(String param) {
foo () ;
return param;

b

b

Listing 4.6: Method looping-through a parameter.

Figure 4.6.: GROUM for Listing 4.6.

a chain of inline heuristics is evaluated to make that decision. This is useful, for example, if one wants
to analyze the use of a specific API and thus is only interested in inlining methods that actually use the
API. Furthermore, since the whole approach aims at detecting anomalies in object usage of APIs, API
methods themselves should not be inlined since this would rather model their internals than their usage.
Another big problem when doing the inlining in the context of anomaly detection is that, if a method that
contains anomalies (regardless whether they are true or false positives) that would not disappear after
the inlining, the number of detected anomalies would increase for every such method that is inlined.
For example, if an anomaly for a method A is detected, the same anomaly for every method that calls A
would be detected after the inlining. Thus, the number of detected redundant anomalies might heavily
increase after the inlining, dependent on the number of calls to the anomalous method. To overcome
this problem, a reasonable selection of inline heuristics for the specific use-case has to be made.

We have implemented several inline heuristics that can be freely combined as proposed in the follow-
ing:

Always Inline Most basic heuristic which allows every action node for which a GROUM is available to
be inlined.

Level Based Inline based on the depth of method calls, i.e., only inline as long as the number of steps in
the call-hierarchy is lower than some threshold. For example, from a given master, if inlining two
levels, do not inline nodes of a GROUM that is the inlinee of an inlinee of the master.

No Recursion Prohibits the inlining of recursive method calls. Also prevents inlining of recursive calls if
they do not occur in the same method but somewhere downwards the call chain.

Same Class Inline if inlinee is defined in the same class as the master.

Same Package Similar to the same class heuristic but on the scope of packages.

19

Returns Or Gets Class Inline if the inlinee uses a specific class in its signature, i.e., returns a value or
gets a parameter with the type of a specific class.

Returns Or Gets Package Similar to the returns or gets class heuristic but uses packages for matching.

Note that these are heuristics that we considered as reasonable for the purpose of detecting anomalies
of JCE usage. The inliner allows for arbitrary heuristics one could come up with. Depending on the
use-case, other heuristics might make sense, e.g., inlining based on the inlinee size or frequency when
doing the inlining pre-pattern-mining. More on the design and implementation of inline heuristics can
be found in Section 5.2.4, furthermore, evaluation of the different heuristics can be found in Section 6.3.

4.3.2 Inline Tree

In some cases it might be necessary to investigate which GROUMSs have been inlined into a given mas-
ter, e.g., if one wants to determine if a detected anomaly has been propagated from an inlinee to the
interprocedural master. We propose inline trees for that purpose. They model the hierarchy of inlined
GROUMs for a given master and can also be seen as a means of observing inlining history, i.e., which
GROUMs have been inlined in which order into a master.

Listing 4.7 shows an example of such a tree as produced and printed for a master of our test set. When
closely examining the tree, one can observe that the exact order, depth and number of inlinees can easily
be derived from its textual representation: There are three methods inlined on the first level, three on
the second and two on the third level.

<three layers.Master: void <init >()>

|- <three layers.HelperClassl: void <init >()>

I
|- <three layers.HelperClassl: javax.crypto.Cipher genCipher()>

|- <three layers.HelperClass2: void <init >(>

I
|- <three layers.HelperClass2: java.security.spec.PKCS8EncodedKeySpec getKeySpec()>

I
| |- <three layers.StaticHelper: byte[] getKey()>

I
I
I
I
I
(.
| |- <three layers.HelperClass2: java.security.KeyFactory getKeyFactory ()>
I
I
|
I

|- <three layers.StaticHelper: java.lang.String getKeyAlgorithm ()>

— <three layers.HelperClassl: byte[] encrypt(javax.crypto.Cipher,java.lang.String)>

Listing 4.7: Inline tree for a three-layer inlining test with three helper classes.

4.4 Virtual Callsites

Until now it has been assumed that method calls can be unambiguously resolved to their target object.
This might not always be the case since Java allows the invocation of virtual methods, i.e., methods
whose receiver object is resolved during runtime and might not be known in a static context. For ex-
ample, consider Listing 4.9 where the method callFoo gets an object of type AbstractClass and calls the

20

abstract class AbstractClass{ void callFoo (AbstractClass receiver) {

abstract void foo(); receiver.foo();
} }

Listing 4.8: Some abstract class. Listing 4.9: Method using AbstractClass.

class SubClassl extends AbstractClass{ class SubClassl extends AbstractClass{

@Override @Override

void foo() { void foo () {

doSomething () ; doSomethingElse () ;

} }

} }
Listing 4.10: Some subclass of AbstractClass. Listing 4.11: Another subclass of AbstractClass.

virtual method foo of that class. At this point it is unclear which of the sub-classes of AbstractClass will
be passed to the method and, hence, which actual implementation of foo needs to be inlined here.

Since the inliner is unable to resolve such calls by the matching of callsite and GROUM signatures
alone, the actual call-graph for the analyzed code has to be provided. From it, it is possible to determine
which actual receiver object — and thus, which method implementation — can reach the callsite of interest.
The precision of such a call-graph can vary tremendously, e.g., some may provide every possible class as
type of the receiver object (class hierarchy analysis [DGC95]) where others might only provide classes
that are actually used in the analyzed code (rapid type analysis [BS96]). Generally speaking, the choice
of call-graph algorithm has to be made based on the specific use-case, e.g., analyzing an application
might allow for a more precise call-graph than analyzing a library.

The inliner allows for customizable lookup of inlinees for a given node. To test if resolving virtual
method calls is able to reduce false positives during anomaly detection, an implementation of a naive
approach, where the inliner resolves these calls to just one of the possible targets as stated by a (class
hierarchy analysis) call-graph, is given.

It has to be mentioned that, while using call-graphs to resolve virtual method calls might yield better
detection results at some points, i.e., less false positives, the opposite might be true in other cases.
For example, consider a master GROUM which has two possible inlinees that again have two possible
inlinees: If every of the inlinees on the second level carry an anomaly that is not eliminated by an
intraprocedural representation, i.e., is not caused due to the separation of object usages, there are four
detected anomalies before and after the inlining. Generally speaking, without resolving virtual callsites,
the number of detected anomalies — not caused by the separation of object usages — stays the same, when
comparing the sum of anomalies found in the master and all its inlinees with all anomalies found in the
master’s intraprocedural representation. Let’s assume now that one of the inlinees on the second level can
be resolved to two different GROUMs for which, again, both produce an anomaly during detection. This
leads to two different interprocedural representations of the master, since on the second level there are
two different inlinees possible. Comparing the number of detected anomalies for both cases leads to very
different results now: Without inlining, there are five anomalies found (one for each possible inlinee),
with inlining, however, there are four anomalies detected for each of the interprocedural masters since
both contain all three anomalies of the non-virtual method calls and, furthermore, one of the anomalies
of the corresponding virtual callsite target. This gets even worse if there are multiple combinations of
virtual callsite targets that can be inlined, i.e, for each possible combination of inlinees an interprocedural
GROUM has to be generated, again carrying all anomalies of shared inlinees. If the inlinee hierarchy gets
deep, the number of possible combinations can easily explode, based on the number of virtual callsites

21

and possible receiver objects of those calls. The situation might not be that bad in cases where one
object is used as target for multiple callsites in one method. For example, if a method has two virtual
calls that are both targeted on the same object and the object can have two different actual receiver
objects at runtime, the combinations shrink from four to two possible interprocedural representations.
Nevertheless, the call-graph needs to carry such information to do this optimization.

It is unclear how big the benefits or drawbacks of resolving virtual callsites are in practice. Techniques
have to be found to overcome the stated problems, or at least minimize their downsides. Furthermore,
optimal call-graph representations have to be determined and evaluated for their trade-offs. Since a
comprehensive handling of virtual callsites is out of scope for this thesis, we consider this as future work.
Nevertheless, an implementation of a naive approach to handle virtual callsites is given in Section 5.3.
Furthermore, an outlook on the potential of their resolution can be found in Chapter 6.

22

5 Implementation

This chapter contains detailed information on the implementation of the inliner, its components and
most of the previously explained concepts.

5.1 Extended GROUMs

For the implementation of the extended GROUMs model, we have applied minor changes to the Groum
class found in grouminer.groum.sit. Groum. The extension of the model mostly consists of augmentations
and subclassings of the previously existing Node and Edge classes, to conform to the specification stated
in Section 4.2.

5.1.1 Dependency Manager

For generating the extended-GROUMs model, a lot of changes had to be made to the dependency man-
agement during GROUM generation. Thus, we decided to make the GROUM generator more robust to
future changes of the GROUM model. The IDependyManager interface abstracts from the process of de-
pendency handling, i.e., generation of data dependency edges, and encapsulates the needed procedures.
If one wants to implement a different handling of dependencies during GROUM generation, it is suffi-
cient to pass a corresponding implementation of the interface to the GROUM generator. The interface
allows for handling parameters, constants and basically every other possible dependency. If one does
not need a specific kind of dependency, the implementation of the corresponding method can just be
omitted. Figure 5.1 shows the public interface of the IDependencyManager.

<<Java Interface>>
€ 1DependencyManager

grouminer.analysis.groumbuilder.abstraction

@ hasDependency(String):boolean

@ registerinParameterDependency(String,Node, Type,int, GroumBuilder):void
@ registerReturnedDependency(String,Node, Type,GroumBuilder):void

@ registerConstantDependency(String,ConstantNode, Type,GroumBuilder):void
@ copyDependency(String,String):void

@® removeDependency(String):void

@® modelReceiverUsage(String,Node,GroumBuilder):void

@® modelParameterUsage(String,Node,int, GroumBuilder):void

@ addDependencies(IDependencyManager):void

@® copy(IDependencyManager):void

@® merge(IDependencyManager,|DependencyManager):void

Figure 5.1.: IDependencyManager class diagram.

In the context of the interface, a dependency is a string that is used to identify an actual dependable ob-
ject in the code, e.g., a variable, constant or parameter. To register such a dependency, the corresponding

23

method is called when the dependency is defined in code, e.g., a dependency for a parameter is registered
when the GROUM generator starts analyzing the target method. The Type parameter of the correspond-
ing registration call denotes the type of dependency, e.g., java.lang.String. The Node parameter of the
registration method denotes the GROUM node that defines the dependency, e.g., the EntryPoint node for
a parameter of the target method. If, for example, some method is called that uses a dependency, one of
the modelXXXUsage methods is called, depending on if it is used as receiver object or as argument of that
call. The corresponding modelXXXUsage method is responsible for inserting the actual representation of
the dependency for the specific GROUM model. For example, if the modelReveiverUsage method is called
for the advanced-edges implementation, and the dependency links to a parameter of the target method,
a parameter-edge from the registered node — the EntryPoint node — to the given target node is inserted
into the GROUM. For a comprehensive understanding of the interface, we suggest looking into one of its
implementations.

5.1.2 GROUM Input/Output

The previous GROUM model is serialized as a general DAG in the DOT-graph! format without any dis-
tinction between node and edge types and, thus, without any information other than the general graph
structure. Therefore, a new parser and serializer which keep all meta information of the GROUMs for
the inlining process are needed. This is necessary since the GROUM generation and the inlining steps
are separated, allowing for more flexibility. The new serializer and parser enable the toolchain to save
and load existing GROUMs at any time, and thus also allow for further treatment of the GROUMs after
the generation process, e.g., GROUM optimizations as in Section 5.1.3. Note that for pattern mining
or anomaly detection, the general graph structure, i.e., labeled nodes that are connected by labeled
edges, is sufficient. However, the new GROUM format only augments the old representation and is fully
compatible with the format expected by the other parts of the toolchain.

For serialization, a GROUM object is converted to its DOT-graph representation, containing meta data
of its nodes and edges, e.g., signature of the method call modeled by an action-node, as node-/edge-
attributes as proposed by the DOT-graph language. For example, Listing 5.1 shows the DOT-graph
representation of an action node that models the call to a method Example.foo. While only the label
attribute is of interest for the processing steps working on general graphs, the format also contains ad-
ditional meta information such as the shape and style properties, used for visualization, or the actual
method signature of the called method, which is important for the inliner. Both, the parser and the
serializer allow for arbitrary extensions of the model. The Node and LabelledEdge classes, which are
superclasses of each node- or edge-type used in the GROUM model, declare methods that are used by
the parser and serializer for parsing/serializing the specific node or edge type. When implementing new
node/edge types, its sufficient to implement the proposed methods to handle the attributes of interest,
for the serializer and parser to work.

[label="Example.foo" shape=box style=rounded nodeType="grouminer.groum. sit.nodes.
ActionNode" signature="<Example: void foo()>" callee="foo" clazz="Example"];

Listing 5.1: Serialized action node.

The GROUM parser employs the DOT-graph parser provided by the ParSeMiS framework, which al-
ready supports arbitrary node- and edge-attributes. However, the support for graph-attributes, as pro-
posed by the DOT-graph language, is not implemented in ParSeMiS’ DOT-graph parser. Since GROUMs
need to carry the signature of the method it models, the parser had to be extended for this feature.

1 http://www.graphviz.org/Home.php

24

http://www.graphviz.org/Home.php

5.1.3 GROUM Optimizations

Since the GROUMs are saved as general graphs before the implementation of a custom serializer/parser,
it was not possible to recover their internal structure besides the general graph structure, i.e., no meta
data like node types. Thus, it was not possible to make modifications on the GROUMs that consider
model-related data after the generation step (or, more precisely, after the serialization at the end of the
generation step). Nevertheless, in some cases one might want to modify or optimize GROUM databases
after the generation step to, for example, obtain other results during mining or anomaly detection, or to
compare slightly different versions of a GROUM. For instance, the pattern mining requires edge labels
but not the edge types, thus all edges are equivalent besides the difference in label. One might want
to eliminate redundant edges introduced by the advanced-edges model, i.e., two edges from one node
to another, or maybe even the labels of some edges to get a more abstract view of the GROUM. We
introduce GROUM optimizations as means of implementing such modifications to existing GROUMs.

The toolchain was extended to contain an additional unit, which can be invoked to run an optimization
on a set of GROUMs. An optimization can be provided by implementing the IGroumOptimizer interface
(grouminer.optimization.IGroumOptimizer). The interface allows for arbitrary modification a developer
might aim for. An implementation for collapsing redundant edges between two nodes and the removal
of entry/exit nodes are provided, which both might be useful before running the pattern miner on a
set of GROUMs. Furthermore, we also provide an implementation that allows for arbitrary chaining of
optimizations, for the case that one wants to conduct multiple modifications successively.

5.2 Inlining Infrastructure

This section contains detailed information about the implementation of the inliner and its components.

Figure 5.2 shows an overview of the most important components of the inlining infrastructure and
their coupling. The core of the whole inlining infrastructure is the GroumlInliner. It is responsible for
converting a given intraprocedural GROUM - the master — into its interprocedural representation. By
using a subclass of the AbstractInlineBuilder class, it abstracts from the actions that have to be conducted
when working with a specific GROUM model (Section 4.3 gives a comprehensive summary of such ac-
tions for the advanced-edges model). This is achieved by modeling the general traversal of a given master,
deciding when to inline, and invoking the specific InlineBuilder implementation to do the actual inlining
for a given node or edge. For the decision if an action node should be inlined, the GroumlInliner utilizes
implementations of the ILookupProvider and IInlineHeuristic interfaces. The former is used to look up a
GROUM that is a valid representation of the given node, e.g., a GROUM with the exact same signature
as used in the call. If so, the latter is used to evaluate if the looked-up GROUM should be inlined, based
on various contextual information. After the inlining process, the GroumlInliner provides an instance of
the InlinedGroum class, which is a subclass of the original Groum class and is the corresponding inter-
procedural representation of the given master. During the whole inlining process, the InlineBuilder keeps
track of the inlined GROUMs by building an inline tree, which can be accessed through the InlinedGroum
class for further processing.

5.2.1 InlineBuilder

The InlineBuilder is responsible for building GROUMs, i.e., keeping track of nodes and edges as well
as building the final InlinedGroum, and executing the actual inlining process for a specific inlinee and

25

<<Java Class>> <<Java Class>>
@ AbstractinlineBuilder<Builders|<}—— (®AdvancedEdgesinlineBuilder
grouminer.interprocedural.inliner.builder grouminer.interprocedural.inliner.builder.implementations.advancedEdges
0.1

<<Java Class>>

(® AdvancedEdgesinlineBuilderFactory

.grouminer.interprocedural.inliner.builder.implementations.advancedEdges

<<Java Class>> <<Java Class>> <<Java Interface>>
@InlinedGroum (®Grouminliner<Builder @ InlineBuilderFactory<Builder>
grouminer.interprocedural.inliner grouminer.interprocedural.inliner 0.1 grouminer.interprocedural.inliner.builder
0.1
0.1
-.. 0.1 <<Java Interface>>
e <<Java Interface>> © lInlineHeuristic
OlinlineTree € 1LookupProvider grouminer.interprocedural.heuristic
grouminer.interprocedural.inliner.inlineTree grouminer.nterprocedural.inliner
< .
<<Java Class>> <<Java Class>> <<Java Class>>
(®NaiveCallGraphLookupProvider (®simpleLookupProvider, ©'signatureBasedHeuristic

grouminer.interprocedural.inliner grouminer.interprocedural.inliner grouminer.interprocedural.heuristic

Figure 5.2.: Inlining infrastructure overview.

GROUM model, i.e., connecting nodes of the master and its inlinees in the corresponding manner. Fig-
ure 5.3 shows the public interface of the AbstractinlineBuilder as used by the GroumlInliner. The builder
is designed to model either a single GROUM-node, or a complete GROUM. This allows the GroumlIn-
liner to handle inlinees, i.e., GROUMs that should replace nodes of the master, and non-inlinees in
the same way. The builder provides some helper methods that can be used to determine if it mod-
els an inlinee (isInlinee()) or a method without control flow other than from an entry- to an exit-node
(hasNoActionNodes()), which is useful for the implementation of its inlineEdge(...) and inlineNode(...)
methods. The GroumlInliner keeps an instance of the GroumBuilder, the master-builder, used to build
the interprocedural representation of the original master. This is done by constructing a builder for each
node of the original master, either representing a whole GROUM - the inlinee — or just a single node
and calling the inlineNode(...) method on the master-builder for each of those child-builders. If a child-
builder contains a single node, it is just inserted into the master-builder. If it contains an inlinee, the
implementation depends on the model and should be implemented by a corresponding subclass, e.g., for
the advanced-edges model, everything except entry- and exit-nodes is added to the builder. For each edge
of the master, the GroumlInliner further on calls inlineEdge(...) on the master-builder, passing the child
builders for the corresponding source and target nodes of the original edge, and the edge itself. The spe-
cific AbstractInlineBuilder implementation then has to handle the correct insertion of that edge, which
depends on the used GROUM model. Generally speaking, different procedures have to be conducted
when inserting an edge between any combination of inlinee and non-inlinee, i.e., two non-inlinees will,
most of the time, be connected with the exact same edge as in the original GROUM, while inserting a
parameter edge from a non-inlinee to an inlinee will possibly lead to multiple new edges. Note that
the InlineBuilder is also responsible for handling empty methods and loop-throughs, as described in
Section 4.3.

26

We provide an implementation for the advanced-edges model as described in Section 4.3.

<<Java Class>>
@ AbstractinlineBuilder<Builder>

grouminer.interprocedural.inliner.builder

"AbstractlnlineBuiIder(Groum)

@ AbstractinlineBuilder(Node)

@ setRoot(Node):void

@ getRoot():Node

¢ isInlinee():boolean

¢ hasNoActionNodes():boolean

¢ getinlineTree():MutablelnlineTree
@® removeDanglingNodes():void
&'inlineEdge(Builder, Builder, LabelledEdge):void
@ inlineNode(Builder):void

@ build():InlinedGroum

@ toString():String

Figure 5.3.: Class diagram of the AbstractinlineBuilder.

5.2.2 Groumlnliner

As already mentioned, the GroumlInliner class abstracts from the specific implementation for inlining
nodes and edges of a given model. Furthermore, the decision, if a node should be expanded, and
which GROUM should be used as replacement, is provided by an implementation of the IInlineHeuristic
and ILookupProvider interfaces. The Groumlnliner is responsible for coordinating the whole inlining
process, i.e., traversing through the master and recursively through every inlinee, going down the inline
hierarchy. It employs depth-first traversal for both proceeding through a given GROUM and proceeding
through the inline hierarchy. Figure 5.4 shows the public interface of the GroumlInliner class. We suggest
using the provided GroumlnlinerFactory, which offers several configurations and helper methods for
building an instance of the inliner. The inlining process can be initiated by calling the inline(...) method,
providing the master that should be translated to its interprocedural representation according to the
inliner’s configuration.

Algorithm 5.1 summarizes the general inlining procedure as pseudo-code. The algorithm consists of
three major procedures that traverse through the given master:

INLINE is analogous to the public inline(...) method as shown in Figure 5.4. The method does nothing
but invoking the PRIVATEINLINE-procedure with the given master (M) and, afterwards, builds the
InlinedGroum with help of the returned InlineBuilder (B,;).

PRIVATEINLINE is responsible for starting the inlining process on a given GROUM and is used to traverse
through the inline hierarchy (line 18). It generates a new instance of the InlineBuilder (B,;) for
the given GROUM. Note that no nodes or edges are added in this step, the master-builder inherits
certain meta data of the master, i.e., name and signature. Furthermore, it starts the inlining process
for each of the masters root-nodes, e.g., entry- and constant-node for the advanced-edges model, by
invoking the INLINENODE-procedure. After finishing the inline process, dangling nodes, i.e., nodes
which are not connected to the rest of the graph, are removed from B,,;. Dangling nodes are

27

introduced during the inlining if a master does not use dependencies returned by an inlinee, e.g.,
callees may return constants that are not used by the caller.

INLINENODE constructs an InlineBuilder for a given node n and implements the depth-first traversal
of the master. If n was already inlined, the corresponding builder is returned (line 14). If not,
the LookupProvider is asked to provide an inlinee for the given node. If there is a suitable inlinee
for n, and the given inline heuristic allows to go deeper in the hierarchy, PRIVATEINLINE is called
recursively with the provided inlinee, rendering it the new master on that level. If n does not allow
for an inlining, a new InlineBuilder, containing only the node, is constructed. In either of the cases,
the newly generated builder for n, B, is passed to the inlineNodemethod of B,,;, which behaves as
described in the previous section (line 22). After adding B,, to B,,, the process has to be repeated
for each successor of n until n has no more successors, i.e., n is an exit node. From there on,
the method invokes B,,’s inlineEdge(...) method for each edge between the current node and its
successors, passing the corresponding builders and the edge itself. The inlining stops if every node
and edge of the master has been traversed.

<<Java Class>>

(® Grouminliner<Builder>
grouminer.interprocedural.inliner

fGroumInIiner(IInIineBuiIderFactory<BuiIder>,|InIineHeuristic,ILookupProvider)

@ inline(Groum):InlinedGroum

Figure 5.4.: Public interface of the Groumlinliner.

5.2.3 LookupProvider

The ILookupProvider interface is a simple means for providing inlinees for a given GROUM-node. For
this purpose, it contains only one method that has to resolve an inlinee based on the current master and
the node of interest (see Figure 5.5). The LookupProver is invoked in line 17 of the inlining algorithm
(Algorithm 5.1). Two implementations of the interface are provided:

<<Java Interface>>
€9 1LookupProvider

grouminer.interprocedural.inliner

@ lookuplinlinee(Groum,ActionNode):Groum

Figure 5.5.: ILookupProvider interface.

SimpleLookupProvider is given a set of GROUMs as viable inlinees and compares the exact signature of
the call, as modeled by the given action-node, with the signatures of the provided GROUMs. The
SimpleLookupProvider returns the matching GROUM, if available. The provider does not resolve
calls to virtual methods since it has no means to determine the exact receiver object of such a call.

NaiveCallGraphLookupProvider has to be provided with a set of GROUMs and a call-graph. The
provider uses the call-graph to resolve calls to one random possible receiver and uses its signature
for the lookup. Thus, the provider is an extension of the SimpleLookupProvider, but additionally
resolves virtual callsites to exactly one of the possible target inlinees.

28

Algorithm 5.1 Pseudo-code of the inlining procedure.

Input: Master GROUM as M

Output: Intraprocedural version M; of M
1: function INLINE(M)
2 return BUILD (PRIVATEINLINE (M))
3: end function

Input: Master GROUM M
Output: InlineBuilder B,, for M
4: function PRIVATEINLINE (M)
5: B, < NEWBUILDER(M)

6: for all r € rooTsor(M) do

7: INLINENODE (B, 1)

8: end for

9: REMOVEDANGLINGNODES (B);)
10: return By,

11: end function

Input: GROUM-node n, master-builder By,
Output: InlineBuilder B, for n

12: function INLINENODE(B,,, n)

13: if B, exists then

14: return B,

15: else

16: i,, <—LOOKUPINLINEE(11)

17: if i, # null AND sHOULDBEINLINED(i,) then
18: B,, <= PRIVATEINLINE(i,,)

19: else

20: B, < NEWBUILDER(1)

21: end if

22: BUILDER_INLINENODE(B,,, B,)

23: for all suc € successorsor(n) do

24: By, < INLINENODE(By;, suc)

25: for all e € EDGESBETWEEN(n, suc) do
26: BUILDER_INLINEEDGE(By,, B,,, By, €)
27: end for

28: end for

29: end if

30: return B,

31: end function

29

5.2.4 InlineHeuristic

The implementation of an inline heuristic has to conform to the IInlineHeuristic interface (Figure 5.6).
The inliner is provided with an implementation of the interface and calls the reset() method of the given
heuristic before every new inlining process, i.e., when the public inline(...) method is called on the
corresponding inliner. Furthermore, the newLevel(...) method is called every time the inliner reaches
a new level of the inlining hierarchy. It is also called in the very first level, i.e., before traversal of the
master. The method has to provide a new instance of the hierarchy implementation for the given level.
This enables the implementation to alter its state based on the current inline level, while not affecting
higher levels (or inlinees on other inline-paths). The main task of the heuristic — deciding if a GROUM
should be inlined —, however, is conducted in the evaluate(...) method. The method has to evaluate if
a GROUM, as provided by the LookupProvider, should be inlined. Thus, an inline heuristic is able to
decide if a GROUM should be inlined based on its predecessing inlinees/masters, the target, and the
information that is present during instantiation of that heuristic.

Implementations for the heuristics stated in Section 4.3.1 are in the grouminer.interprocedural. heuristic
package. For chaining multiple heuristics, the HeuristicChain class can be used. The class provides
functionality for connecting multiple inline heuristics in either conjunctional or disjunctional units. The
class itself is an implementation of the interface and, therefore, allows connecting several inline heuristics
to arbitrary logical expressions.

<<Java Interface>>

@ !InlineHeuristic
grouminer.interprocedural.heuristic

@ evaulate(Groum):boolean
@ reset():void
@ newLevel(Groum):linlineHeuristic

Figure 5.6.: lInlineHeuristic interface.

5.3 Call-Graphs

Since the GROUM generation process is decoupled from the inliner, means to de-/serialize the call-graphs
are needed. We employ the ProBe? framework for this purpose. CryptoMiner did not handle call-graphs
before, thus, its interface was extended to allow for passing-through arguments to the GROUMbuilding
Soot analysis. This allows for using the call-graph algorithm and configuration which is most useful
for the specific use-case. Since the call-graphs can grow very large and the GROUM generator already
supports filtering for methods of interest, e.g., only methods that use the JCE, the possibility to filter
the call-graphs for those methods was also added. Helper methods for de-/serialization can be found in
grouminer.util. CallGraphUtils.

5.4 Test Cases

The inliner comes with a comprehensive test-suite, containing several test cases for the general function-
ality of the inliner, heuristics and the inline tree. Testing of the inliner is done by providing Java source

2 https://github.com/karimhamdanali/probe

30

https://github.com/karimhamdanali/probe

code for a target intraprocedural master, its inlinees, and an interprocedural version of that master. The
inlined version of the master will then be compared with the GROUM as generated for the provided
interprocedural version. Furthermore, test cases are provided that focus on the potential of the inliner
in regards to the reduction of false positives during the anomaly detection process. These rather test
the actual usefulness of the inliner than its correctness. Results for the conducted tests can be found in
Section 6.2.

5.4.1 Interprocedural Pattern Usage Filter

To test the potential of the inliner, synthetic test cases were undesired. Therefore, we provide another
tool that uses the Soot framework, to filter for methods which potentially contain interprocedural usage
of patterns. If provided with a set of applications and the class or package of interest, the tool delivers a
list of masters and inlinees that are likely to contain interprocedural object usage of the specified types.

To obtain those lists, the tool exploits the following facts: If an object-usage is distributed among
several methods — an interprocedural object usage —, the objects have to be propagated to or from those
methods, i.e, if method A calls method B to do something on an object, the object has to be passed to B
in some way. Since Cryptominer does not handle class fields by now, the only way to exchange objects
beyond the scope of a method, is using the method’s return value or parameters. By filtering for methods
whose signatures (only considering return and parameter types) contain certain classes or packages of
interest, i.e., classes/packages which are modeled by the patterns, it is likely to find methods that would
profit from an inlining. With the help of the call-graph, it is easy to find all callers of those callees. These
are also likely to be the root (or an intermediate) method of an interprocedural pattern-usage, i.e, they
separate object usages over several callers, and thus valuable masters.

31

6 Evaluation

The evaluation of the interprocedural approach is conducted in two steps: Firstly, the general viability
of the inlining is tested by applying it on a test set that only contains methods which are likely to profit
from it, i.e., methods that contain parts of patterns and calls to methods that also contain parts of those
patterns. Thereby;, it is possible to prove the general ability of the approach for reducing false positives
in the anomaly detection step. Furthermore, we have conducted experiments on a much larger test-set
to show the applicability of the approach on more general data set.

6.1 Setup

We investigated 102 Android applications obtained from the AppCrawl!' project and filtered for JCE
usage, leaving 50 relevant application. Out of those, again only methods using the JCE are extracted
and converted to the GROUM model, resulting in a test set of 1012 intraprocedural GROUMs. From this
set, seven patterns of JCE usage are mined with a minimum frequency of 11, i.e., an object usage has to
occur at least 11 times in the test set to be considered a pattern. Invoking the anomaly detector with a
minimal overlap of 30% between pattern and target results in an overall sum of 208 violations. A manual
investigation of 64 of those violations yielded that 70% of them are caused by the intraprocedural nature
of the GROUMs. We use the same test-set to evaluate how much of those violations can be eliminated by
the presented interprocedural approach.

6.2 Constructed Tests

To test the potential of the interprocedural model, the test set is filtered for GROUMs that are likely
to profit from it. Therefore, the Interprocedural Pattern Usage Filter (Section 5.4.1) is used to obtain
only GROUMs from the test set which contain the javax.crypto.Cipher class in their signature and their
callers. The filtering results in 26 strict-callers, i.e., not called by the others, 12 intermediate-callers
and 170 strict-callees. Looking at the numbers, it is striking that the amount of strict-/intermediate-
callers is very low compared to the amount of strict-callees. An investigation of the stated methods
shows that 157 of the callees are never called in the test set, leaving us with 25 (170 + 12 — 157)
possible inlinees. It seems that a lot of these unused methods are helpers, i.e., provide pre-configured
instances of the javax.crypto.Cipher class, from the Bouncy/Spongy Castle cryptography libraries, which
are common service providers for the JCE. While most of the applications ship a version of one of these
providers, the largest fraction of their API is left unused. Since all of those unused methods contain parts
of javax.crypto.Cipher object usage, we expect those to produce high numbers of false positives in the
experiments. A possible solution to mitigate those false positives is the exclusion of such libraries from
the test set. However, an investigation of the callees that are actually used in the test set yields that most
of those are helper methods provided by the libraries as well. They are invoked in application code to
deliver pre-configured javax.crypto.Cipher objects; thus, an inlining of those might lead to a reduction of
false positives found in application code.

1 http://appcrawlr.com/

32

http://appcrawlr.com/

Table 6.1.: Results for the constructed test set

#violations
min-overlap | LookupProvider | #inlinees | #inlinings | intra | inter | diff | reduction
Simple 22 63 48 47 1 2.08%
30% NaiveCallGraph 23 80 48 35 13 27.08%
Provider-diff 1 17 - - 12 25%
Simple 22 63 141 | 91 | 50 | 35.46%
20%|25% | NaiveCallGraph 23 80 141 | 45 | 96 | 68.09%
Provider-diff 1 17 - - 45 | 32.63%
Simple 22 63 149 | 105 | 44 | 29.53%
15% NaiveCallGraph 23 80 149 | 59 | 90 | 60.40%
Provider-diff 1 17 - - 46 30.87%
Simple 22 63 184 | 141 | 43 | 23.37%
0% NaiveCallGraph 23 80 184 | 85 | 99 | 53.80%
Provider-diff 1 17 - - 56 | 30.34%

For the experiment, two versions of the inliner are configured, one using the SimpleLookupProvider and
the other using the NaiveCallGraphLookupProvider. Both are configured to use the AlwaysInlineHeuristic,
since the set of inlinees is designed to be profitable when inlined and thus other heuristics would just
restrict the inlining capabilities for the experiment. The anomaly detector is provided with the same
seven patterns as in our previous experiments, having only the intra-/interprocedural strict-callers as
targets. Table 6.1 shows the results of the experiment. The min-overlap column specifies the minimal
overlap between pattern and target as chosen for the individual test run. For each run, the results for
both of the lookup providers are visualized in one row, followed by the difference of both.

SimpleLookupProvider

Considering the results of a minimal overlap of 30%, the number of eliminated violations (reduction rate
of 2.08%) is unexpectedly low for the SimpleLookupProvider, although 22 of the 25 possible inlinees are
actually inlined. When comparing those numbers with the results for lower minimal overlaps, it can be
noticed that the number of inlinees and inlinings does not change, while the actual violation reduction
rate goes up to 35.46% with an absolute reduction of 43-50 violations. So why do the results for a
minimal overlap of 30% vary so much from the others? Considering the fact that the number of inli-
nees/inlinings is consistent across all experiments and the absolute violation reduction does not vary that
much for a minimal overlap of 0-25%, we assume that the absolute number of eliminated false positives
stays more or less the same across all experiments. Based on that assumption it gets obvious that the
interprocedural model introduces violations that were not detected in the intraprocedural model (if us-
ing a minimal overlap of 30%). In the intraprocedural model, object usages which are separated among
several methods oftentimes do not exceed the minimal overlap threshold. Thus, these go unnoticed by
the detector. Since in the interprocedural model those usages are joined together, the number of overall
occurrences grows. For instance, if each of two targets and a pattern have one node in common and the
pattern has four nodes, a threshold of 30% will yield no occurrences in the targets (since one of four
nodes is an overlap of 25%). When building an interprocedural model of those two targets, however,
the object usages in these are combined and thus exceed the threshold. Hence, an occurrence is found
after the inlining which was ignored before. Considering this, the interprocedural approach seems to

33

eliminate about the same number of violations as it introduces when using a threshold of 30%. Nev-
ertheless, this can be seen as an improvement against the threshold approach since the threshold just
hides violations that are not very expressive in the intraprocedural context, while the interprocedural
model actually resolves those violations. In other words, using the threshold helps hide violations due to
interprocedural usages when working with the intraprocedural model, while using the interprocedural
model can resolve those violations (instead of hiding them) and, thus, yield actual true positives that go
unnoticed with the intraprocedural approach.

Since the test set was designed to contain methods that are likely to profit from the inlining, the
reduction of violations - and thus false positives - was expected to be close to 100%. However, using the
SimpleLookupProvider results in a maximum of 35.46% eliminated violation. A manual investigation of
the violations yielded four main causes for this:

Incompleteness of patterns: While the test set contains only methods that have usage of the
javax.crypto.Cipher class, the used pattern models just some of the use cases of the class. For
instance, consider the pattern in Figure 3.4: While a lot of targets contain the pattern after in-
lining, there are still several other instances of similar patterns (like using a CipherOutputStream
instead of invoking the doFinal(...) method manually). So while occurrences of the pattern are
found and marked as violations, those are false positives which are caused by the incompleteness
of the patterns. The inliner is not able to eliminate such false positives since they are not caused
by the separation of patterns but rather due to the incompleteness of those. It has to be stated that
providing an implementation of the CipherOutputStream might actually eliminate the false positive
for this concrete example, but the general problem resides.

Field usage: Since Cryptominer does not allow for handling class fields, these are omitted in the model.
However, sometimes patterns are distributed between several methods of a class where the object
of usage is shared by a class field. Consider the case where some method m instantiates such a
class C and afterwards calls a method encrypt() on the instance. C itself builds a Cipher object in
its constructor and assigns it to one of its fields. The field is then accessed in the encrypt() method
to call doFinal(...) on the Cipher object. If every call in m is inlined, an interprocedural version
of m (m;) which contains both, the internals of the constructor and the encrypt() method of C,
is generated. However, since neither the constructor returns the Cipher object, nor the encrypt()
method takes it as a parameter, there is no means to determine if those are related in the current
GROUM model. Thus, no edge between the Cipher object’s usage in the constructor and in the
encrypt() method can be inserted into m;. Hence, if the pattern in Figure 3.4 is used for detection,
the detector will detect multiple violations (depending on the minimum overlap) of that pattern in
m;.

Virtual callsites: The simple lookup approach does not allow the resolving of callsites for which the exact
type of the receiver is statically unknown. We observed several of such callsites in the test set. All
of those seem to invoke some helper of the JCE library to construct a Cipher object that is then
further on used by the application. Multiple implementations of the helper exist.

Incomplete usage: We observed that even after the inlining some object usages remain incomplete, e.g.,
for the pattern in Figure 3.4, the doFinal(...) method is still missing in some of the interprocedural
GROUMs. As already mentioned, a lot of the methods in the test set are helpers provided by
libraries like BouncyCastle, this also holds for some of the masters. Even after the inlining, the
interprocedural GROUM is missing some object usages that are expected do be found in application

34

code using the modeled helpers. Since the helpers are never used in the test set, the inliner stands
no chance to eliminate those incomplete usages.

NaiveCallGraphLookupProvider

While the other cases can not be handled by the inliner, the resolution of virtual callsites can be. To
test the potential of resolving those, we came up with the previously explained naive approach. Again,
consider Table 6.1: The Provider-diff column shows the difference between using the SimpleLookup-
Provider and the NaiveCallGraphLookupProvider for the given experimental setup. It is striking that
there is only one additional GROUM inlined compared to the simple lookup approach, yielding a viola-
tion reduction of an additional 25-32.63%. Considering the average amount of inlinings by inlinee of
2.52 = 63/25 for the simple approach, it is remarkable that this single GROUM has so many inlinings
(17). Furthermore, the NaiveCallGraphLookupProvider yields an additional violation reduction of 45-56
(30.34-32.64%) violations for a minimal overlap of 0-25%, which is about twice as much compared to
the SimpleLookupProvider. For a minimal overlap of 30%, the difference in violation reduction is even
13-times as much. This shows that at least 12 of the exposed violations (caused by exceeding the mini-
mum overlap threshold after inlining) can be eliminated by the interprocedural model with a resolution
of callsites, rendering the approach even more superior in contrast to simply ignoring of such cases.

Resolving virtual callsites to one single possible target yields a reduction of false positives of up to
68.09%. This can be seen as an upper bound for the experiment. A more sophisticated approach for
handling virtual callsites would need to inline each of the possible targets and thus potentially introduce
additional violations. This might not necessarily be a bad thing, e.g., if one version of such an inlinee
builds a true positive with the master which another does not. Nevertheless, since the number of true
positives is comparably low, it is much more likely that such an inlinee introduces one of the other two
stated causes (incompleteness of patterns, class fields) for false positives in the test set, which are much
more frequent. While this alone might lead to a much higher number of — redundant - violations, due
to the high amount of inlinings, the problem gets even worse: One version of every master has to be
created for all potential callees of any combination of virtual callsites (for example, four masters if there
is one virtual callsite with four possible targets, 16 if there are two virtual callsites with four possible
targets each). This would lead to an even bigger amount of redundant violations (false positives as
well as true positives). However, the problem of introduced redundant violations is also observable
for the simple lookup approach. Means to identify and eliminate such redundancies have to be found.
Nevertheless, even with the introduction of such redundancies, the NaiveCallGraphLookupProvider yields
a very promising reduction of false positives by up to 69.09%.

The absolute violation reduction for the SimpleLookupProvider decreases when the minimal overlap
goes below 20%. While having a too high threshold reveals — ignored — occurrences, a too low threshold
introduces more redundant violations; either of the two compensate the number of reduced violations
in some way. In other words, if the threshold is set low, even overlaps of just one node are considered as
occurrence and thus also reported as violations (there are no one-node patterns); if these are inlined at
several callsites, the detected violations will be detected at all of these callsites if they were not eliminated
by the inliner. It seems that a minimal overlap of 20-25% yields the best results in the tradeoff between
hidden and redundant violations. However, inspecting the values for the NaiveCallGraphLookupProvider
shows that the absolute number of violation reduction even increases towards a minimal overlap of 0%.
This is the case because some of the redundancies are violations that can be resolved by the handling
virtual callsites.

35

Table 6.2.: Results for the whole test set with a minimal overlap of 30% using the SimpleLookupProvider

#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwayslInline 232 568 208 | 223 | -15 | -7.21%
ReturnsOrGetsPackage (javax.crypto) 170 429 208 | 223 | -13 | -6.25%
ReturnsOrGetsClass(javax.crypto.Cipher) 56 140 208 | 215 | -7 -3.37%
IsinSameClass 74 172 208 | 207 | 1 0.48%
IsinSameOrSubPackage 214 488 208 | 225 | -17 | -8.17%
LevelBased(1) 232 512 208 | 233 | -25 | -12.02%
LevelBased(2) 232 574 208 | 227 | -19 | -9.13%
LevelBased(3) 232 575 208 | 225 | -17 -8.17%
LevelBased(4) 232 568 208 | 223 | -15 | -7.21%
LevelBased(5) 232 568 208 | 223 | -15 -7.21%

6.3 Real World Tests

We also conducted tests on the whole test set as described in Section 6.1. Therefore, we used several
combinations of the inline heuristics stated in Section 4.3.1 for the tests. The NoRecursionHeuristic is
used in addition to every heuristic combination, to not run the inliner in an infinite loop. While we
conducted experiments for 53 different combinations of heuristics, we only show, for each test run, the
ones that yield the most interesting insights. A comprehensive listing of all test results can be found in
Appendix A. In contrast to the constructed tests, where only a few dedicated masters were chosen, the
inliner is invoked for every GROUM in the test set. To avoid introducing additional redundant violations
during the anomaly detection, we remove inlined GROUMs from the set before conducting the anomaly
detection.

Table 6.2 shows the results of the anomaly detection for a minimal overlap threshold of 30% using the
SimpleLookupProvider.

Considering the results of this test run, several things are noticeable: Firstly, it is conspicuous that
the number of violations rises compared to the intraprocedural model. As we have already observed
during the constructed tests, this is caused by the introduction of violations which were hidden by the
high minimal overlap threshold. Furthermore, the heuristics that restrict inlining (IsInSameClass and
ReturnsOrGets(javax.crypto.Cipher)) have the lowest introduction of new violations. The IsInSameClass
heuristic does even provide an improvement, albeit a very small one. The reason for this is the com-
parably low amount of newly introduced (redundant) violations due to a lower number of inlinings.
Moreover, comparing the results for the AlwaysInline and the IsinSameOrSubPackage heuristics, it is ob-
servable that 92% of inlinees seem to be in the same or a sub-package as the master and, similarly, 86%
of inlinings seem to happen between classes in the same or a subpackage. Additionally, it stands out that
using the level-based heuristics leads to the same amount of inlinees as always inlining while the number
of inlinings stagnates when reaching the fourth level. This indicates a maximum inline hierarchy of four
in the test set. Since this holds for every test run, the data for level four and five will be omitted in the
following visualizations. Furthermore, this shows that inlining only one level of the hierarchy already
leads to the usage of all possible inlinees with 90% of the maximum number of inlinings. However,
proceeding deeper in the inline hierarchy seems to yield an improvement of violation reduction by up
to 40% with only 10% more inlinings compared to the first level. One might notice that the amount of
inlinings is higher for inlining two or three levels compared to always inlining. This seems a bit coun-

36

Figure 6.2.: Two levels 1 Figure 6.3.: Two levels 2

Figure 6.1.: Three levels

Table 6.3.: Results for the whole test set with a minimal overlap of 30% and the NaiveCallGraphProvider

#violations

Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwaysInline 273 947 208 | 254 | -46 | -22.12%
ReturnsOrGetsPackage(javax.crypto) 198 697 208 | 242 | -34 | -16.35%
ReturnsOrGetsClass(javax.crypto.Cipher) 63 227 208 | 232 | -24 | -11.54%
IsinSameClass 77 180 208 | 207 1 0.48%

IsInSameOrSubPackage 229 553 208 | 225 | -44 | -12.02%
LevelBased(1) 273 735 208 | 252 | 44 | -21.15%
LevelBased(2) 273 936 208 | 265 | -57 | -27.40%
LevelBased(3) 273 954 208 | 250 | -42 | -20.19%

terintuitive at first. Consider the inline trees in Figures 6.1 to 6.3. Blue nodes are inlinees and black
nodes are master GROUMs. When inlining three levels, the master (m) has four possible inlinees: a, b,
c and d. When inlining only two levels, there are two possible masters considering the inline hierarchy
in Figure 6.1: m, which has a and b as inlinee, and a which has b, ¢ and d as inlinees. Thus, we get
four possible inlinings for three levels of inlining and and five for two levels of inlining. This behavior
appears if the inline depth is constraint to a value that is smaller than the maximum inline depth (with
the exception for inlining only one level). Since the maximum inline depth is four in our test set, we can
observe higher amounts of inlinings when only inlining two or three levels.

Table 6.3 shows the results of the anomaly detection with a minimal overlap threshold of 30% and the
NaiveCallGraphProvider. Most of the observations for the previous run still hold here. However, there are
a few differences: A much higher introduction of new violations compared to the SimpleLookupProvider
occur. This is not unexpected since even more hidden violations are revealed when processing more
inlinees. Comparing the always inline cases, there are 15% more inlinees and 60% more inlinings
with the NaiveCallGraphLookupProvider. The high amount of newly introduced inlinings compared to
the low amount of newly introduced inlinees supports the observations made for the constructed test
cases. Furthermore, contrary to the results for the SimpleLookupProvider run, the amount of introduced
violations fluctuates dependent on the maximum level of inlining. Having a look at the number of
inlinings for those cases suggests that when inlining just one level, a significantly lower amount of
virtual callsites is processed compared to inlining two or more levels. Also, the resolution of those
callsites seem to be most beneficial when reaching the third level for the test set.

To mitigate newly introduced violations that were hidden by the high minimal overlap threshold, we
employ a post-filtering step which filters out interprocedural GROUMs that produce higher (or equal)

37

Table 6.4.: Results for a minimal overlap of 30%, the SimpleLookupProvider and post filtering

#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwayslInline 28 53 208 | 191 | 17 8.17%
ReturnsOrGetsPackage (javax.crypto) 17 31 208 | 192 | 16 7.69%
ReturnsOrGetsClass(javax.crypto.Cipher) 16 30 208 | 192 | 16 7.69%
IsinSameClass 6 8 208 | 192 | 16 7.69%
IsinSameOrSubPackage 12 23 208 | 195 | 14 6.25%
LevelBased(1) 5 10 208 | 194 | 14 6.73%
LevelBased(2) 23 44 208 | 192 | 16 7.69%
LevelBased(3) 26 51 208 | 191 | 17 8.17%

Table 6.5.: Results for a minimal overlap of 30%, the NaiveCallGraphLookupProvider and post filtering

#violations

Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwaysInline 67 175 208 | 151 57 27.40%
ReturnsOrGetsPackage (javax.crypto) 46 137 208 | 151 57 27.40%
ReturnsOrGetsClass(javax.crypto.Cipher) 36 109 208 | 151 57 27.40%
IsInSameClass 6 8 208 | 192 16 7.69%
IsInSameOrSubPackage 15 29 208 | 196 | 1512 5.77%
LevelBased(1) 11 21 208 | 190 18 8.65%
LevelBased(2) 43 118 208 | 162 46 22.12%
LevelBased(3) 65 173 208 | 151 57 27.40%

amounts of violations than their intraprocedural version and all inlinees together. After the filtering,
the intraprocedural versions of the filtered GROUMs are re-added to the test set, to not sophisticate the
results.

Again, the minimal overlap is set to 30%. Table 6.4 shows the filtered results for the SimpleLookup-
Provider and Table 6.5 for the NaiveCallGraphLookupProvider, respectively.

Looking at the filtered results for the SimpleLookupProvider, a violation reduction of 6.25-8.17% is
observable. Compared to the results for the same configuration without the post-filtering, the improve-
ment is quite noticeable. However, the number of inlinees and inlinings is very low in comparison. This
shows that just a fraction of possible inlinings are able to compensate the newly introduced violations
which occur due to exceeding the minimal overlap threshold. Again, we expect a high number of redun-
dant violations to hamper better reduction rates. It is striking that constraining the inlining with special
heuristics yields lower reduction rates than inlining when ever possible. We expect the filtering to miti-
gate most of the improvements due to constraining the inlining since only interprocedural GROUMs are
kept that yield less violations than their intraprocedural analogs anyway.

For the NaiveCallGraphLookupProvider with filtering, much better reduction rates of up to 27.40% are
observed. It seems that resolving virtual callsites is very profitable with regards to reducing violations
for the test set. This supports the observations made during the constructed tests and also hold for the
following test runs. Again the best reduction seems to happen when not constraining the inlining. Fur-
thermore, while we previously observed that the largest fraction of inlinings occur in the same or some
sub-package of the corresponding master, we can now see that those seem to be quite unprofitable since
most of those are filtered out. The stated observations for this test run also hold for the following exper-

38

Table 6.6.: Results for a minimal overlap of 20% and the SimpleLookupProvider

#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwayslInline 232 568 613 | 555 | 58 9.46%
ReturnsOrGetsPackage (javax.crypto) 170 429 613 | 566 | 47 7.67%
ReturnsOrGetsClass(javax.crypto.Cipher) 56 140 613 | 566 | 47 7.67%
Table 6.7.: Results for a minimal overlap of 20%, the SimpleLookupProvider and post filtering
#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
Alwayslnline 59 125 613 | 543 | 70 | 11.42%
ReturnsOrGetsPackage (javax.crypto) 40 91 613 | 558 | 55 8.97%
ReturnsOrGetsClass(javax.crypto.Cipher) 20 50 613 | 562 | 51 8.32%

iments, thus we will now focus on the most promising heuristics only: AlwaysInline, ReturnsOrGetsClass
and ReturnsOrGetsPackage.

Tables 6.6 and 6.7 show the results for a minimal overlap of 20% and the SimpleLookupProvider with
and without post-filtering. Regarding the results without filtering, it is remarkable that the amount of
inlinees and inlinings is exactly the same as for the a minimal overlap of 30%. Nevertheless, the absolute
and relative reduction rate is positive for the run. This strongly supports our observation of newly
introduced violations when setting the the minimal overlap threshold to high. However, the overall
reduction of violations is superior to using a minimal overlap of 30%, with or without filtering. An
interesting aspect here is also the fact that the filtering still improves the reduction of violations between
both runs. Thus, there seem to be a few interprocedural GROUMs that introduce more violations than
their intraprocedural counterparts even with a threshold of 20%. We believe that this is because of
the introduction of redundant violations which are caused due to the reasons stated in Section 6.2
(i.e., incompleteness of patterns, field usage, virtual callsites, incomplete usage). Furthermore, the high
amount of filtered-out interprocedural GROUMs with a minimal improvement of violation reduction
suggests that a lot of those produce equal amounts of violations as their intraprocedural counterparts.
This might be either because no violations could be resolved by the inlining or because the resolved
and newly introduced violations (due to redundancies) compensate each other. While not constraining
the inlining with specific heuristics leads to better reduction rates again, this time the benefit of always
inlining is even more significant.

Tables 6.8 and 6.9 show the results for a minimal overlap of 20% and the NaiveCallGraphLookup-
Provider with and without post-filtering. Again, it is observable that while the amount of inlinees and
inlinings is the same as for a minimal overlap of 30% without filtering, the relative and absolute violation
reduction is much higher for this configuration. We observed the best results for this configuration which
is also supported by the results for the constructed tests. Furthermore, the test run finally approves that
while using a specific heuristic in some cases yields slight improvements, using no constraints for inlining
does not lower the reduction rates much. Most of the time, using the AlwaysInlineHeuristic does yield the
same or even better results than a specific heuristic. Thus, and since using a specific heuristic oftentimes
leads to much lower reduction rates, we suggest not constraining the inlining at all.

Experiments with no minimal overlap threshold were also conducted. Table 6.10 shows a summary of

those for the AlwaysInline heuristic only. It is not surprising that without filtering the violation reduction
is still better than with a minimal overlap of 30%. However, using the filter produces better results for

39

Table 6.8.: Results for a minimal overlap of 20% and the NaiveCallGraphLookupProvider

#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
AlwayslInline 273 947 613 | 446 | 167 | 27.24%
ReturnsOrGetsPackage(javax.crypto) 198 697 613 | 444 | 169 | 27.57%
ReturnsOrGetsClass(javax.crypto.Cipher) 63 227 613 | 440 | 173 | 28.22%
Table 6.9.: Results for a minimal overlap of 20%, the NaiveCallGraphLookupProvider and post filtering
#violations
Heuristic #inlinees | #inlinings | intra | inter | diff | reduction
Alwayslnline 129 409 613 | 433 | 180 | 29.36%
ReturnsOrGetsPackage (javax.crypto) 78 290 613 | 432 | 181 | 29.53%
ReturnsOrGetsClass(javax.crypto.Cipher) 44 192 613 | 436 | 177 | 28.87%

Table 6.10.: Results for a minimal overlap of 0%

#violations
Filter | Naive-cg | #inlinees | #inlinings | intra | inter | diff | reduction
false false 232 568 1105 | 1069 | 36 3.26%
true false 70 144 1105 | 1042 | 63 5.70%
false true 273 947 1105 | 936 | 169 | 15.29%
true true 138 428 1105 | 924 | 181 | 16.38%

the SimpleLookupProvider and the NaiveCallGraphLookupProvider with a minimal overlap of 30%. While
there are no newly introduced violations due to exceeding the threshold after inlining for this test run,
having no threshold leads to more redundancies of small — non-expressive — occurrences, as already
mentioned in Section 6.2.

For none of our cases the inlining took longer than 0.28 seconds, processing all 1012 GROUMs. The
maximum observed average increase of nodes for a given master is 50% with an average increase of
65% for the edges. The highest reduction of violations for the whole test set is 30.67% by using the
NaiveCallGraphLookupProvider, filtering, a minimal overlap of 20% and a disjunctive combination of the
ReturnsOrGetsClass(javax.crypto.Cipher) and IsinSameOrSubPackage heuristics.

Since we do not change the semantics of the object usages but just combine the ones that are separated
over several methods, we believe that no true positives are eliminate by the approach. Considering that
about 70% of all violations are false positives caused by the intraprocedural nature of the old model, the
reached violation reduction of 30.67% can also be seen as a reduction of those false positives by 42.86%.

While using the "wrong” heuristic can yield much lower reduction rates than inlining every possi-
ble call, using the ones tailored towards expected usages (ReturnsOrGetsPackage, ReturnsOrGetsClass)
slightly improves the results in some cases. Furthermore, while using the filtering improves the re-
sults significantly when using high minimal overlap thresholds, it is less beneficial for lower thresholds.
Therefore, we consider the choice of heuristic and the filtering less important than choosing a reason-
able threshold and having a sophisticated method to resolve virtual callsites. Furthermore, we believe
that tackling the stated reasons for false positives that are not caused due to the separation of patterns
(Section 6.2), might greatly improve the inliner’s capabilities and, thus, the overall reduction of false
positives. While handling class fields by extending the GROUM generation is an applicable improve-
ment, the elimination of violations due to the incompleteness of patterns and incomplete usages are a

40

general problem that can not easily be resolved. Means to detect redundant violations caused by those,
and due to the resolution of multiple virtual callsite targets, have to be found. This might greatly im-
prove the reduction of false positives when using the interprocedural model, and might eventually lead
to reduction rates near to the assumed 70%.

41

7 Conclusion

The work presented in this thesis aims at an automatic approach for generating interprocedural Graph-
based Object Usage Models (GROUMs) to reduce the high amount of false positives introduced due
to the intraprocedural nature of the previous model. For this purpose, we introduce an extension of
the graph model that captures additional semantics of relations between nodes of the graphs and the
graphs themselves. This not only enables the application of graph-based inlining techniques on those
GROUMs, but also renders the model more complete and precise in regards to its representation of
the original object relationships in code. We present rules which, when applied on the extended graph
model, allow for correct insertion of callee-GROUMs into caller-GROUMs to generate an interprocedural
representation of such caller-GROUMs. Furthermore, we introduce heuristics that can be used and freely
combined to decide which nodes should be extended for their callee-GROUM and, thus, prevent the
undesired inlining of methods, such as API calls of interest. We have also presented a naive approach
which resolves virtual calls that can have multiple calling targets to exactly one of the possible target is
presented. To evaluate the inlining, a test set of 1012 GROUMs using the Java Cryptographic Extensions
is extracted from 50 Android applications. For the same test set a false positive ratio of 70% due to
interprocedural object usages was preliminary assessed. In our experiments on a selected portion of
those GROUMs which are likely to profit from the inlining, CryptoMiner achieves violation reduction
rates by up to 35.46% without handling virtual callsites and 68.09% with handling those. We assume
all of those eliminated violations to be false positives. Furthermore, we conducted experiments on the
whole test set which yielded violation reduction rates by up to 11.42% without handling callsites with
multiple possible targets, and up to 30.67% with the resolution of those, respectively. Again, we assume
all of those eliminated violations to be false positives. Based on the preliminary assessed 70% of false
positives that are caused by the intraprocedural nature of the old model, a very promising reduction rate
of those false positives by up to 42.86% is achieved.

In our experiment, we observed increasing numbers of false positives when conducting the anomaly
detection with high minimal-overlap thresholds between patterns and targets. We identify the reason for
this to be the revelation of small, incomplete object usages that are hidden by the threshold in the in-
traprocedural model. Inlining those leads to more complete usages that exceed the threshold and, thus,
to more detected violations. While using a high threshold might be a good idea in the intraprocedural
model to hide small, inexpressive object usages that are separated over several methods, the interproce-
dural model allows those to be combined and tested for anomalous usage, and therefore, also eliminates
false positives that where hidden by the threshold but likewise reveals true positives that were hidden
by it.

Limitations of the Approach

We identified four main causes that hamper the inlining of reaching the expected violation reduction
rate of 70%. Firstly, the incompleteness of patterns, that is, patterns of correct object usage are missing
in the pattern set. A correct object usage might be detected as violation because the used pattern set
is missing the pattern for that usage but does contain a very similar pattern, e.g., with a one-node-
difference. It is generally a non-trivial task to attack this problem since the possible combinations of
object usages are enormous and, thus, having a complete pattern set might not be achievable. The

42

approach is furthermore limited by incomplete usages, where the test set contains methods that contain
parts of correct object usage, but are never called. These methods are usually library methods that have
to be called by application code to complete the object usage. Violations are detected in those because
they miss some parts of the patterns, but since application code is responsible for calling those and, thus,
completing the object usage, it is undecidable if those are true or false positives. Another reason for
false positives that cannot be eliminated by the approach is the lack of the current model to capture field
usages. Hence, it is not possible to detect relations between receiver objects of several method calls where
the object is stored inside a field instead of a variable. Since those object usages cannot be connected
in the model, violations are detected. Last but not least, there is the general problem of introducing
redundant violations when inlining one GROUM into several others. Each of the GROUMs that have the
same method inlined, contains all of the violations of that method after inlining. True positives and false
positives are duplicated alike. While the incompleteness of patterns and incomplete usages can generally
not be attacked by the inliner, the other two can. We believe that, especially, a sophisticated approach
for the elimination of duplicate violations is a very promising augmentation to the inlining and may yield
significantly better results.

In the following the research questions stated in Section 1.1 are answered and a proposal of future
work is given:

Research Questions

* Is interprocedural GROUM generation able to reduce false positives caused by the separation
of object usages over multiple methods?
In our experiments we were able to show that using an interprocedural GROUM model is able to
significantly reduce false positives that are caused by the separation of object usages among several
methods. We reached reduction rates of detected violations by up to 30.67% and, thus, by up to
42.86% for those false positives. However, we believe that tackling the stated limitations of the
approach can yield even better results.

* How does interprocedural GROUM generation impact the detection of true positives and
other false positives?
Large amounts of duplicated violations — true and false positives alike — were observed during
the experiments. Nevertheless, significant reduction of violations could be reached despite the
introduced redundancies. Thus, the eliminated amount of false positives seems to be superior to
the introduced duplicates.

* What are possible strategies for interprocedural GROUM generation? How can the genera-
tion of such interprocedural GROUMs avoid including API internals?
While we provide several heuristics to constrain the inlining of proceeding to deep in the inline
hierarchy, i.e., inline internals of API calls so that those are no longer modeled by the GROUMs, we
did not observe any of those cases. We assume that our test set does not contain implementations
of APIs of interest. Furthermore, we observed that while constraining the inlining can yield slight
improvement in some cases; in most cases it does rather hurt the potential of the inliner. Thus, we
suggest using the AlwaysInline heuristic as long as there are no inlinings of API internals observ-
able. Still, if conducting experiments on specific APIs, it is easy to provide a heuristic that explicitly
prevents calls to that API to get inlined.

43

Future Work

* A more sophisticated handling of virtual callsites

In this thesis, a naive approach for handling virtual calls with multiple target objects is presented.
However, the approach does resolve such calls to just one of the possible targets. Inlining all
possible receivers of such a call leads to several versions of a caller-GROUM and, thus, to large
amounts of duplicated violations. A more sophisticated approach is needed, which allows for
inlining every possible method of such a call, while not leading to duplicated versions of the caller-
GROUM, or at least version without duplicate violations.

Extending the GROUM model to capture field usages

The current model does not capture class field usages. Extending the model for such would allow
resolving relations between calls on such class fields and, thus, the elimination of false positives
that occur due to interprocedural object usages where the object is shared by a class field.

Eliminating duplicate violations introduced by inlining

We consider the most promising extension to be an approach for detecting and eliminating dupli-
cated violations. These occur if violations that are not caused due to interprocedural object usage
(alone) are introduced in several caller-GROUMs. Means have to be found that allow the identifi-
cation of introduced duplicates and a collection of those, so that these violations are reported as a
composite while still keeping track of all possible occurrences.

Improved modeling of exceptional flow

The current model has an over-approximative way of handling exceptional flow. Since there is
no way to identify the type of a thrown exception, exceptional control flow cannot be precisely
handled. Currently, when inlining, every throw statement is connected to every exception han-
dler of the outer GROUM. Means to correctly map paths where an exception is thrown with the
corresponding exception handler have to be developed.

44

List of Figures

1.1.

3.1.
3.2.
3.3.
3.4.
3.5.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.1.
5.2
5.3.
5.4.
5.5.
5.6.

6.1.
6.2.
6.3.

Original GROUM for AES encryptionexample. 1
Original GROUM for control structure example 6
Original GROUM for AES encryption example with exception handling 8
Original GROUM for the AES Cipher factory method 8
Pattern for javax.crypto.Cipher usage mined from GROUMs using the JCE 8
Interprocedural GROUM for AES encryption example with exception handling 9
Master for parameter passing example inold model 13
Inlinee for parameter passing exampleinoldmodel 13
GROUM for the exception handling example with advanced edges 14
GROUM for the data flow example with advancededges 16
GROUM for a method with no control flow 19
GROUM for a method that loops-through a parameter 19
Class diagram for the IDependencyManager interface 23
Overwiev of the inlining infrastructure 26
Class diagram of the AbstractInlineBuilder, 27
Class diagram of the GroumlInliner class, 28
Class diagram of the ILookupProvider interface 28
Class diagram of the IInlineHeuristic interface, 30
Example inline tree for three levels of inlining 37
First example inline tree for two levels of inlining 37
Second example inline tree for two levels of inlining 37

45

References

[ABO5]

[AFSSO00]

[ANAT15]

[ANN"16]

[BCF™99]

[Bod14]

[BS96]

[CLO6]

[DGCI5]

[EBFK13]

Cyrille Artho and Armin Biere. Subroutine inlining and bytecode abstraction to simplify
static and dynamic analysis. Electronic Notes in Theoretical Computer Science, 141(1):109
— 128, 2005. ISSN 1571-0661. URL http://www.sciencedirect.com/science/article/
pii/S1571066105051467.

Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter E Sweeney. A comparative study of
static and profile-based heuristics for inlining. SIGPLAN Not., 35(7):52-64, January 2000.
ISSN 0362-1340. URL http://doi.acm.org/10.1145/351403.351416.

Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira Mezini. To-
wards secure integration of cryptographic software. In 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!), On-
ward! 2015, pages 1-13. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3688-8. URL
http://doi.acm.org/10.1145/2814228.2814229.

Sven Amani, Sarah Nadi, Hoan A. Nguyen, Tien N. Nguyen, and Mira Mezini. Mubench:
A benchmark for api-misuse detectors. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR '16, pages 464-467. ACM, New York, NY, USA, 2016.
ISBN 978-1-4503-4186-8. URL http://doi.acm.org/10.1145/2901739.2903506.

Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar,
Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John Whaley. The jalapeNo
dynamic optimizing compiler for java. In Proceedings of the ACM 1999 Conference on Java
Grande, JAVA '99, pages 129-141. ACM, New York, NY, USA, 1999. ISBN 1-58113-161-5.
URL http://doi.acm.org/10.1145/304065.304113.

Eric Bodden. Ts4j: A fluent interface for defining and computing typestate analyses. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, SOAP '14, pages 1-6. ACM, New York, NY, USA, 2014. ISBN 978-1-4503-
2919-4. URL http://doi.acm.org/10.1145/2614628.2614629.

David E Bacon and Peter E Sweeney. Fast static analysis of c++ virtual function calls.
SIGPLAN Not., 31(10):324-341, October 1996. ISSN 0362-1340. URL http://doi.acm.
org/10.1145/236338.236371.

Dhruva R. Chakrabarti and Shin-Ming Liu. Inline analysis: Beyond selection heuristics. In
Proceedings of the International Symposium on Code Generation and Optimization, CGO 06,
pages 221-232. IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2499-0.
URL http://dx.doi.org/10.1109/CG0.2006.17.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the 9th European Conference on Object-
Oriented Programming, ECOOP ’95, pages 77-101. Springer-Verlag, London, UK, UK, 1995.
ISBN 3-540-60160-0. URL http://dl.acm.org/citation.cfm?id=646153.679523.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13, pages 73-84. ACM,

46

[EHO7]

[EKKB10]

[Fow05]

[GLJ*12]

[HanO5]

[LCWZ14]

[Lin07]

[LZ05]

[NKMB16]

[NNN16]

[NNP*09]

New York, NY, USA, 2013. ISBN 978-1-4503-2477-9. URL http://doi.acm.org/10.1145/
2508859.2516693.

William Eberle and Lawrence Holder. Discovering structural anomalies in graph-based data.
2007 7th IEEE International Conference on Data Mining Workshops, pages 393-398, 2007.

Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Bohm. Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona,
Spain, September 20-24, 2010, Proceedings, Part I, chapter Software-Defect Localisation
by Mining Dataflow-Enabled Call Graphs, pages 425-441. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. ISBN 978-3-642-15880-3. URL http://dx.doi.org/10.1007/
978-3-642-15880-3_33.

Martin Fowler. Fluentinterfaces, December 2005. URL http://martinfowler.com/bliki/
FluentInterface.html.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly
Shmatikov. The most dangerous code in the world: Validating ssl certificates in non-browser
software. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 38-49. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1651-4.
URL http://doi.acm.org/10.1145/2382196.2382204.

Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005. ISBN 1558609016.

David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryptographic
software fail?: A case study and open problems. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys '14, pages 7:1-7:7. ACM, New York, NY, USA, 2014. ISBN 978-1-4503-
3024-4. URL http://doi.acm.org/10.1145/2637166.2637237.

Christian Lindig. Mining patterns and violations using concept analysis. Technical report,
Universitit des Saarlandes, Saarbriicken, Germany, June 2007.

Zhenmin Li and Yuanyuan Zhou. Pr-miner: Automatically extracting implicit programming
rules and detecting violations in large software code. SIGSOFT Softw. Eng. Notes, 30(5):306~
315, September 2005. ISSN 0163-5948. URL http://doi.acm.org/10.1145/1095430.
1081755.

Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. Jumping through hoops: Why
do java developers struggle with cryptography apis? In Proceedings of the 38th International
Conference on Software Engineering, ICSE '16, pages 935-946. ACM, New York, NY, USA,
2016. ISBN 978-1-4503-3900-1. URL http://doi.acm.org/10.1145/2884781.2884790.

Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. A large-scale study on
repetitiveness, containment, and composability of routines in open-source projects. In
Proceedings of the 13th International Conference on Mining Software Repositories, MSR
16, pages 362-373. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4186-8. URL
http://doi.acm.org/10.1145/2901739.2901759.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N.
Nguyen. Graph-based mining of multiple object usage patterns. In Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC/FSE ’09, pages 383-392. ACM,
New York, NY, USA, 2009. ISBN 978-1-60558-001-2. URL http://doi.acm.org/10.1145/
1595696.1595767.

47

[SCWK13]

[SHR"00]

[VRCG"99]

[Wer07]

[WZL07]

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. Automatic con-
struction of inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), CGO ’13, pages 1-
12. IEEE Computer Society, Washington, DC, USA, 2013. ISBN 978-1-4673-5524-7. URL
http://dx.doi.org/10.1109/CG0.2013.6495004.

Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for java. SIG-
PLAN Not., 35(10):264-280, October 2000. ISSN 0362-1340. URL http://doi.acm.org/
10.1145/354222.353189.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot - a java bytecode optimization framework. In Proceedings of the 1999 Confer-
ence of the Centre for Advanced Studies on Collaborative Research, CASCON 99, pages 13—.
IBM Press, 1999. URL http://dl.acm.org/citation.cfm?id=781995.782008.

Tobias Werth. Design and implementation of a dag-miner (entwurf und implementation
eines dag-miners). Master’s thesis, Friedrich-Alexander-Universitdt Erlangen—Niirnberg,
January 2007. URL https://www2.informatik.uni-erlangen.de/EN/teaching/thesis/
download/i2D00355 . pdf.

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting object usage anoma-
lies. In Proceedings of the the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-
FSE ’07, pages 35-44. ACM, New York, NY, USA, 2007. ISBN 978-1-59593-811-4. URL
http://doi.acm.org/10.1145/1287624.1287632.

48

A Appendix

The following listings contain the data obtained in our experiments. Every table corresponds to a specific
minimal overlap threshold (i.e., 30%, 20% and 0%). The number of violations for the intraprocedural
model can be found in the corresponding tables heading. General information about the experiment
setup can be found in section 6.1. The average number of nodes for the intraprocedural model is 18,
while the average number of edges is 31. Abbreviations used in the listings can be found in table A.1.
Since we filter out inlinees to not sophisticate the test results, the number of targets in every test run is
the number of GROUMs (1012) minus the number of inlinees. An exception for this is when inlining is
constraint to a certain inline level that is smaller than the maximum possible level of inlining. In such
a case some GROUMs can be masters, thus targets for the anomaly detection, and inlinees at the same
time (see figs. 6.1 to 6.3 for an example). A more detailed explanation for this phenomenon can be
found in section 6.3.

Table A.1.: Abbreviations

Abbreviation Description
filter true: interprocedural GROUMs that introdgce a.ldditional violations are filtered out
false: no filtering
e true: the NaiveCallGraphLookupProvider is used
false: the SimpleLookupProvider is used
t Number of targets for the anomaly detection
ees Number of inlinees
ings Number of inlinings
\ Violations with the interprocedural model
diff Violation difference between the inter- and intraprocedural model
impr Violation reduction by the interprocedural model
time Time to convert all intraprocedural GROUMs to their interprocedural analog
n Average number of nodes in the interprocedural model
e Average number of edges in the interprocedural model
RoGPkg ReturnsOrGetsPackageHeuristic
RoGCls ReturnsOrGetsClassHeuristic
[ISOrSubPkg IsinSameOrSubPackageHeuristic
IISCls IsInSameClassHeuristic
Level(x) LevelBasedHeuristic with level x
(AND) Conjunctional HeuristicChain
(OR) Disjunctional HeuristicChain

Table A.2.: Results for a minimal overlap threshold of 30% (violations intra: 208)

filter cg heuristic t ees | ings v diff impr time n e
false | false | AlwaysInline 780 232 | 568 [223 | -15 -7.21% 0.240s | 25 | 46
false | false | RoGPkg(javax.crypto) 842 170 | 429 | 221 | -13 -6.25% 0.149s | 23 | 41
false | false | RoGCls(javax.crypto.Cipher) 956 56 140 | 215 -7 -3.37% 0.082s | 19 | 34
false false | IISOrSubPkg 798 214 488 225 -17 -8.17% 0.079s | 24 | 45
false false | IISCls 938 74 172 207 1 0.48% 0.054s | 20 | 35
false false | LevelHeuristic(1) 826 232 512 233 -25 -12.02% | 0.079 s 24 | 44

49

filter cg heuristic t ees | ings v diff impr time n e
false false Level(2) 786 232 574 227 -19 -9.13% 0.098 s 25 46
false false Level(3) 782 232 575 225 -17 -8.17% 0.071s 25 46
false false | Level(4) 780 232 568 223 -15 -7.21% 0.067s | 25 | 46
false false | Level(5) 780 232 568 223 | -15 -7.21% 0.066s | 25 | 46
false false (AND): [Level(1), RoGPkg(javax.crypto)] 876 170 387 219 -11 -5.29% 0.052s | 22 | 39
false false (AND): [Level(2), RoGPkg(javax.crypto)] 847 170 433 225 -17 -8.17% 0.057 s 22 41
false false (AND): [Level(3), RoGPkg(javax.crypto)] 843 170 431 223 -15 -7.21% 0.070s | 22 | 41
false false (AND): [Level(4), RoGPkg(javax.crypto)] 842 170 429 221 -13 -6.25% 0.056s | 23 | 41
false false (AND): [Level(5), RoGPkg(javax.crypto)] 842 170 429 221 -13 -6.25% 0.056s | 23 | 41
false false (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 969 56 125 216 -8 -3.85% 0.043 s 19 | 34
false false (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 957 56 140 219 -11 -5.29% 0.045 s 19 34
false false (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 956 56 140 215 -7 -3.37% 0.045 s 19 | 34
false false (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 956 56 140 215 -7 -3.37% 0.045 s 19 | 34
false false (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 956 56 140 215 -7 -3.37% 0.045 s 19 | 34
false false (AND): [Level(1), IISCls] 947 74 169 213 -5 -2.40% 0.046 s 19 34
false false (AND): [Level(2), IISCls] 938 74 172 207 1 0.48% 0.047 s 20 35
false false (AND): [Level(3), IISCls] 938 74 172 207 1 0.48% 0.056's 20 35
false false (AND): [Level(4), IISCls] 938 74 172 207 1 0.48% 0.059s | 20 | 35
false false (AND): [Level(5), IISCls] 938 74 172 207 1 0.48% 0.059 s 20 35
false false (AND): [Level(1), IISOrSubPkg] 832 214 451 227 -19 -9.13% 0.058 s 23 43
false false (AND): [Level(2), IISOrSubPkg] 799 214 489 225 -17 -8.17% 0.062 s 24 | 44
false false (AND): [Level(3), IISOrSubPkg] 798 214 488 225 -17 -8.17% 0.062 s 24 45
false false (AND): [Level(4), IISOrSubPkg] 798 214 488 225 -17 -8.17% 0.063s | 24 | 45
false false (AND): [Level(5), IISOrSubPkg] 798 214 488 225 -17 -8.17% 0.062s | 24 | 45
false false (OR): [Level(1), RoGPkg(javax.crypto)] 796 232 563 236 -28 -13.46% | 0.064s | 25 | 46
false false (OR): [Level(2), RoGPkg(javax.crypto)] 782 232 574 223 -15 -7.21% 0.070 s 25 47
false false | (OR): [Level(3), RoGPkg(javax.crypto)] 781 232 573 223 | -15 -7.21% 0.066s | 25 | 46
false false (OR): [Level(4), RoGPkg(javax.crypto)] 780 232 568 223 -15 -7.21% 0.066s | 25 | 46
false false (OR): [Level(5), RoGPkg(javax.crypto)] 780 232 568 223 -15 -7.21% 0.066s | 25 | 46
false false (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 810 232 532 236 -28 -13.46% | 0.087s | 24 | 45
false false (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 784 232 573 223 -15 -7.21% 0.064s | 25 | 46
false false | (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 781 232 573 223 | -15 -7.21% 0.065s | 25 | 46
false false (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 780 232 568 223 -15 -7.21% 0.065s | 25 | 46
false false (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 780 232 568 223 -15 -7.21% 0.065 s 25 46
false false (OR): [Level(1), IISCls] 800 232 547 230 -22 -10.58% 0.063 s 25 46
false false (OR): [Level(2), IISCIs] 782 232 570 223 -15 -7.21% 0.065s | 25 | 46
false false (OR): [Level(3), IISCls] 780 232 568 223 -15 -7.21% 0.065 s 25 46
false false (OR): [Level(4), IISCls] 780 232 568 223 -15 -7.21% 0.066 s 25 46
false false (OR): [Level(5), IISCls] 780 232 568 223 -15 -7.21% 0.065 s 25 46
false false (OR): [Level(1), IISOrSubPkg] 789 232 562 231 -23 -11.06% | 0.065s | 25 | 46
false false (OR): [Level(2), IISOrSubPkg] 781 232 569 223 -15 -7.21% 0.065s | 25 | 46
false false (OR): [Level(3), IISOrSubPkg] 780 232 568 223 -15 -7.21% 0.066 s 25 46
false false (OR): [Level(4), IISOrSubPkg] 780 232 568 223 -15 -7.21% 0.066s | 25 | 46
false false (OR): [Level(5), IISOrSubPkg] 780 232 568 223 -15 -7.21% 0.065 s 25 46
false false (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 850 162 384 219 -11 -5.29% 0.055s | 22 | 40
false false (AND): [RoGPkg(javax.crypto), IISCls] 951 61 152 201 7 3.37% 0.045 s 19 | 34
false false | (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 795 217 | 505 224 | -16 -7.69% 0.064s | 24 | 45
false false (OR): [RoGCls(javax.crypto.Cipher), IISCls] 903 109 282 222 -14 -6.73% 0.052s | 21 38
true false | AlwaysInline 984 28 53 191 17 8.17% 0.065s | 18 | 32
true false | RoGPkg(javax.crypto) 995 17 31 192 16 7.69% 0.058s | 18 | 32
true false | RoGCls(javax.crypto.Cipher) 996 16 30 192 16 7.69% 0.047s | 18 | 32
true false | IISOrSubPkg 1000 12 23 195 13 6.25% 0.065s | 18 | 31
true false 1ISCls 1006 6 8 192 16 7.69% 0.051s 18 31
true false Level(1) 1007 5 10 194 14 6.73% 0.061 s 18 31
true false Level(2) 990 23 44 192 16 7.69% 0.068 s 18 32
true false | Level(3) 986 26 51 191 17 8.17% 0.067 s 18 | 32
true false | Level(4) 984 28 53 191 17 8.17% 0.068 s 18 | 32
true false | Level(5) 984 28 53 191 17 8.17% 0.068 s 18 | 32
true false (AND): [Level(1), RoGPkg(javax.crypto)] 1007 5 10 194 14 6.73% 0.054 s 18 31
true false (AND): [Level(2), RoGPkg(javax.crypto)] 998 14 27 193 15 7.21% 0.059 s 18 | 32
true false (AND): [Level(3), RoGPkg(javax.crypto)] 995 17 31 192 16 7.69% 0.057 s 18 | 32
true false (AND): [Level(4), RoGPkg(javax.crypto)] 995 17 31 192 16 7.69% 0.058 s 18 32
true false (AND): [Level(5), RoGPkg(javax.crypto)] 995 17 31 192 16 7.69% 0.059 s 18 | 32
true false (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 1008 4 9 194 14 6.73% 0.045 s 18 31
true false | (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 999 13 26 193 15 7.21% 0.046s | 18 | 32
true false (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 996 16 30 192 16 7.69% 0.047 s 18 | 32
true false (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 996 16 30 192 16 7.69% 0.046 s 18 32

50

filter cg heuristic t ees | ings v diff impr time n e
true false (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 996 16 30 192 16 7.69% 0.048 s 18 | 32
true false | (AND): [Level(1), IISCls] 1008 4 6 194 14 6.73% 0.056 s 18 | 31
true false (AND): [Level(2), IISCls] 1006 6 8 192 16 7.69% 0.049 s 18 31
true false (AND): [Level(3), IISCls] 1006 6 8 192 16 7.69% 0.057 s 18 31
true false | (AND): [Level(4), IISCls] 1006 6 8 192 16 7.69% 0.049 s 18 | 31
true false | (AND): [Level(5), IISCls] 1006 6 8 192 16 7.69% 0.048 s 18 | 31
true false | (AND): [Level(1), IISOrSubPkg] 1007 5 10 194 14 6.73% 0.060 s 18 | 31
true false (AND): [Level(2), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.066 s 18 31
true false (AND): [Level(3), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.065 s 18 31
true false (AND): [Level(4), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.065 s 18 31
true false (AND): [Level(5), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.066 s 18 31
true false (OR): [Level(1), RoGPkg(javax.crypto)] 995 17 31 192 16 7.69% 0.068 s 18 | 32
true false (OR): [Level(2), RoGPkg(javax.crypto)] 987 26 48 191 17 8.17% 0.069 s 18 32
true false (OR): [Level(3), RoGPkg(javax.crypto)] 986 26 51 191 17 8.17% 0.070 s 18 | 32
true false | (OR): [Level(4), RoGPkg(javax.crypto)] 984 28 53 191 17 8.17% 0.069 s 18 | 32
true false (OR): [Level(5), RoGPkg(javax.crypto)] 984 28 53 191 17 8.17% 0.069 s 18 32
true false (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 995 17 31 192 16 7.69% 0.065 s 18 | 32
true false (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 987 26 48 191 17 8.17% 0.069 s 18 32
true false | (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 986 26 51 191 17 8.17% 0.069s | 18 | 32
true false | (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 984 28 53 191 17 8.17% 0.069 s 18 | 32
true false (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 984 28 53 191 17 8.17% 0.069 s 18 32
true false (OR): [Level(1), IISCls] 991 21 37 190 18 8.65% 0.067 s 18 | 32
true false (OR): [Level(2), IISCIs] 986 26 51 191 17 8.17% 0.069 s 18 32
true false (OR): [Level(3), IISCls] 984 28 53 191 17 8.17% 0.068 s 18 32
true false (OR): [Level(4), IISCls] 984 28 53 191 17 8.17% 0.067 s 18 32
true false (OR): [Level(5), IISCls] 984 28 53 191 17 8.17% 0.068 s 18 32
true false (OR): [Level(1), IISOrSubPkg] 991 21 37 190 18 8.65% 0.074 s 18 | 32
true false | (OR): [Level(2), IISOrSubPkg] 986 26 51 191 17 8.17% 0.068 s 18 | 32
true false (OR): [Level(3), IISOrSubPkg] 984 28 53 191 17 8.17% 0.074 s 18 32
true false | (OR): [Level(4), IISOrSubPkg] 984 28 53 191 17 8.17% 0.068 s 18 | 32
true false (OR): [Level(5), IISOrSubPkg] 984 28 53 191 17 8.17% 0.068 s 18 32
true false | (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.057s | 18 | 31
true false | (AND): [RoGPkg(javax.crypto), IISCls] 1006 6 8 192 16 7.69% 0.047 s 18 | 31
true false | (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 995 17 31 192 16 7.69% 0.066s | 18 | 32
true false (OR): [RoGCls(javax.crypto.Cipher), IISCls] 995 17 31 192 16 7.69% 0.055 s 18 | 32
false true | AlwaysInline 739 273 | 947 | 254 | -46 | -22.12% | 0.264s | 27 | 51
false true | RoGPkg(javax.crypto) 814 198 | 697 | 242 | -34 | -16.35% | 0.184s | 23 | 42
false | true | RoGCls(javax.crypto.Cipher) 949 63 227 | 232 | -24 | -11.54% | 0.155s | 19 | 35
false true | IISOrSubPkg 783 229 | 553 | 233 | -25 | -12.02% | 0.196s | 25 | 46
false true 1ISCls 935 77 180 207 1 0.48% 0.158 s 20 35
false true Level(1) 827 273 735 252 -44 -21.15% | 0.196s 25 46
false true Level(2) 759 273 936 265 -57 -27.40% 0.220 s 27 51
false true Level(3) 743 273 954 250 -42 -20.19% 0.222's 27 51
false true Level(4) 739 273 947 254 -46 -22.12% | 0.222's 27 51
false true Level(5) 739 273 947 254 -46 -22.12% 0.221s 27 51
false true (AND): [Level(1), RoGPkg(javax.crypto)] 877 198 576 241 -33 -15.87% | 0.171s 22 40
false true (AND): [Level(2), RoGPkg(javax.crypto)] 827 198 697 260 -52 -25.00% | 0.187s | 23 | 42
false true (AND): [Level(3), RoGPkg(javax.crypto)] 815 198 699 244 | -36 -17.31% | 0.183s | 23 | 42
false true (AND): [Level(4), RoGPkg(javax.crypto)] 814 198 697 242 -34 -16.35% | 0.183 s 23 42
false true (AND): [Level(5), RoGPkg(javax.crypto)] 814 198 697 242 -34 | -16.35% | 0.184s | 23 | 42
false true (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 972 63 158 232 -24 -11.54% | 0.150s 19 34
false true (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 954 63 227 250 -42 -20.19% | 0.159s 19 | 35
false true (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 949 63 227 232 -24 | -11.54% | 0.154s 19 | 35
false true (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 949 63 227 232 -24 -11.54% | 0.154s 19 35
false true (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 949 63 227 232 -24 | -11.54% | 0.155s 19 | 35
false true (AND): [Level(1), IISCls] 944 77 177 213 -5 -2.40% 0.150 s 19 | 34
false true (AND): [Level(2), IISCls] 935 77 180 207 1 0.48% 0.148 s 20 35
false true (AND): [Level(3), IISCls] 935 77 180 207 1 0.48% 0.161s 20 35
false true (AND): [Level(4), IISCls] 935 77 180 207 1 0.48% 0.169 s 20 35
false true (AND): [Level(5), IISCls] 935 77 180 207 1 0.48% 0.164 s 20 35
false true (AND): [Level(1), IISOrSubPkg] 824 229 501 236 -28 -13.46% 0.193 s 24 44
false true (AND): [Level(2), IISOrSubPkg] 786 229 553 233 -25 -12.02% | 0.194 s 25 46
false true (AND): [Level(3), IISOrSubPkg] 783 229 553 233 -25 -12.02% 0.210s 25 46
false true (AND): [Level(4), IISOrSubPkg] 783 229 553 233 -25 -12.02% | 0.220s 25 46
false true (AND): [Level(5), IISOrSubPkg] 783 229 553 233 -25 -12.02% 0.219 s 25 46
false true (OR): [Level(1), RoGPkg(javax.crypto)] 759 273 937 264 | -56 -26.92% | 0.242s | 27 | 50
false true (OR): [Level(2), RoGPkg(javax.crypto)] 742 273 955 254 -46 -22.12% | 0.221s 27 51

51

filter cg heuristic t ees | ings v diff impr time n e
false true (OR): [Level(3), RoGPkg(javax.crypto)] 740 273 952 254 | -46 -22.12% | 0.219s | 27 | 51
false true (OR): [Level(4), RoGPkg(javax.crypto)] 739 273 947 254 | -46 -22.12% | 0.226s | 27 | 51
false true (OR): [Level(5), RoGPkg(javax.crypto)] 739 273 947 254 -46 -22.12% | 0.247 s 27 51
false true (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 800 273 814 | 262 | -54 | -25.96% | 0.224s | 26 | 47
false true (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 749 273 952 260 -52 -25.00% | 0.223s | 27 | 51
false true (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 742 273 964 260 -52 -25.00% | 0.227s | 27 | 51
false true (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 739 273 947 254 | -46 -22.12% | 0.227s | 27 | 51
false true (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 739 273 947 254 -46 -22.12% | 0.243 s 27 51
false true (OR): [Level(1), IISCls] 797 273 778 249 -41 -19.71% | 0.221s | 26 | 49
false true (OR): [Level(2), IISCls] 755 273 932 261 -53 -25.48% 0.237 s 27 51
false true (OR): [Level(3), IISCls] 741 273 947 248 -40 -19.23% | 0.263 s 27 51
false true (OR): [Level(4), IISCls] 739 273 947 254 -46 -22.12% 0.220 s 27 51
false true (OR): [Level(5), IISCls] 739 273 947 254 -46 -22.12% | 0.233 s 27 51
false true (OR): [Level(1), IISOrSubPkg] 782 273 818 251 -43 -20.67% 0.233 s 27 50
false true (OR): [Level(2), IISOrSubPkg] 752 273 934 261 -53 -25.48% 0.237 s 27 51
false true (OR): [Level(3), IISOrSubPkg] 741 273 947 248 -40 -19.23% | 0.224 s 27 51
false true (OR): [Level(4), IISOrSubPkg] 739 273 947 254 -46 -22.12% 0.221s 27 51
false true (OR): [Level(5), IISOrSubPkg] 739 273 947 254 -46 -22.12% | 0.235s 27 51
false true (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 843 169 414 228 -20 -9.62% 0.185s | 22 | 41
false true (AND): [RoGPkg(javax.crypto), IISCls] 949 63 159 201 7 3.37% 0.157 s 19 | 34
false true (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 773 239 660 246 -38 -18.27% | 0.201 s 25 47
false true (OR): [RoGCls(javax.crypto.Cipher), IISCls] 893 119 379 239 -31 -14.90% | 0.167s | 21 38
true true | AlwaysInline 945 67 175 151 57 27.40% | 0.240s [19 | 35
true true | RoGPkg(javax.crypto) 966 46 137 | 151 57 27.40% | 0.207s | 19 | 34
true true | RoGCls(javax.crypto.Cipher) 976 36 109 151 57 27.40% | 0.171s | 19 | 33
true true | IISOrSubPkg 997 15 29 196 12 5.77% 0.205s | 18 | 32
true true 1ISCls 1006 6 8 192 16 7.69% 0.149 s 18 31
true true Level(1) 1001 11 21 190 18 8.65% 0.195s 18 31
true true Level(2) 970 43 118 162 46 22.12% 0.213s 19 | 33
true true Level(3) 947 65 173 151 57 27.40% 0.219 s 19 35
true true Level(4) 945 67 175 151 57 27.40% 0.222 s 19 35
true true Level(5) 945 67 175 151 57 27.40% 0.220 s 19 35
true true (AND): [Level(1), RoGPkg(javax.crypto)] 1002 10 20 190 18 8.65% 0.171s 18 | 31
true true (AND): [Level(2), RoGPkg(javax.crypto)] 982 30 92 162 46 22.12% 0.182s 18 33
true true (AND): [Level(3), RoGPkg(javax.crypto)] 966 46 137 151 57 27.40% 0.184 s 19 34
true true (AND): [Level(4), RoGPkg(javax.crypto)] 966 46 137 151 57 27.40% 0.185s 19 34
true true (AND): [Level(5), RoGPkg(javax.crypto)] 966 46 137 151 57 27.40% 0.198 s 19 | 34
true true (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 1006 6 13 190 18 8.65% 0.151s 18 | 31
true true (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 989 23 71 162 46 22.12% 0.157 s 18 32
true true (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 976 36 109 151 57 27.40% 0.156 s 19 | 33
true true (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 976 36 109 151 57 27.40% 0.156 s 19 33
true true (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 976 36 109 151 57 27.40% 0.163s | 19 | 33
true true (AND): [Level(1), IISCls] 1008 4 6 194 14 6.73% 0.150 s 18 31
true true (AND): [Level(2), IISCls] 1006 6 8 192 16 7.69% 0.149 s 18 31
true true (AND): [Level(3), IISCls] 1006 6 8 192 16 7.69% 0.150s 18 31
true true (AND): [Level(4), IISCls] 1006 6 8 192 16 7.69% 0.153 s 18 31
true true (AND): [Level(5), IISCls] 1006 6 8 192 16 7.69% 0.154 s 18 | 31
true true (AND): [Level(1), IISOrSubPkg] 1007 5 10 194 14 6.73% 0.185s 18 | 31
true true (AND): [Level(2), IISOrSubPkg] 997 15 29 196 12 5.77% 0.206 s 18 32
true true (AND): [Level(3), IISOrSubPkg] 997 15 29 196 12 5.77% 0.199 s 18 32
true true (AND): [Level(4), IISOrSubPkg] 997 15 29 196 12 5.77% 0.199 s 18 32
true true (AND): [Level(5), IISOrSubPkg] 997 15 29 196 12 5.77% 0.204 s 18 | 32
true true (OR): [Level(1), RoGPkg(javax.crypto)] 955 57 153 152 56 26.92% 0.218 s 19 34
true true (OR): [Level(2), RoGPkg(javax.crypto)] 948 65 170 151 57 27.40% 0.225 s 19 35
true true (OR): [Level(3), RoGPkg(javax.crypto)] 947 65 173 151 57 27.40% 0.225 s 19 35
true true (OR): [Level(4), RoGPkg(javax.crypto)] 945 67 175 151 57 27.40% 0.221 s 19 35
true true (OR): [Level(5), RoGPkg(javax.crypto)] 945 67 175 151 57 27.40% 0.220 s 19 | 35
true true (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 961 51 135 151 57 27.40% 0.200 s 19 | 34
true true (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 948 65 166 151 57 27.40% 0.227 s 19 35
true true (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 947 65 173 151 57 27.40% 0.220's 19 | 35
true true (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 945 67 175 151 57 27.40% 0.220 s 19 | 35
true true (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 945 67 175 151 57 27.40% 0.222 s 19 35
true true (OR): [Level(1), IISCls] 985 27 52 186 22 10.58% 0.205 s 18 32
true true (OR): [Level(2), IISCIs] 966 46 125 161 47 22.60% 0.230 s 19 34
true true (OR): [Level(3), IISCls] 945 67 175 151 57 27.40% 0.223 s 19 35
true true (OR): [Level(4), IISCls] 945 67 175 151 57 27.40% 0.225s 19 35
true true (OR): [Level(5), IISCls] 945 67 175 151 57 27.40% 0.225 s 19 35

52

filter cg heuristic t ees | ings v diff impr time n e
true true (OR): [Level(1), IISOrSubPkg] 982 30 58 187 21 10.10% 0.217 s 18 | 32
true true (OR): [Level(2), IISOrSubPkg] 966 46 125 161 47 22.60% 0.234 s 19 | 34
true true (OR): [Level(3), IISOrSubPkg] 945 67 175 151 57 27.40% 0.224 s 19 35
true true (OR): [Level(4), IISOrSubPkg] 945 67 175 151 57 27.40% 0.224 s 19 35
true true (OR): [Level(5), IISOrSubPkg] 945 67 175 151 57 27.40% 0.224 s 19 | 35
true true | (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 1000 12 23 195 13 6.25% 0.187s | 18 | 31
true true (AND): [RoGPkg(javax.crypto), IISCls] 1006 6 8 192 16 7.69% 0.148 s 18 31
true true (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 962 50 141 152 56 26.92% 0.203 s 19 34
true true (OR): [RoGCls(javax.crypto.Cipher), IISCls] 970 42 122 151 57 27.40% 0.171s | 19 | 33

Table A.3.: Results for a minimal overlap threshold of 20% (violations intra: 613)

filter cg heuristic t ees | ings v diff impr time n e
false false | AlwaysInline 780 232 568 | 555 58 9.46% 0.209s | 25 | 46
false | false | RoGPkg(javax.crypto) 842 170 | 429 | 566 47 7.67% 0.119s | 23 | 41
false | false | RoGCls(javax.crypto.Cipher) 956 56 140 | 566 47 7.67% 0.082s | 19 | 34
false false 11SOrSubPkg 798 214 488 569 44 7.18% 0.101 s 24 | 45
false false | IISCls 938 74 172 578 35 5.71% 0.066s | 20 | 35
false false | Level(1) 826 232 512 607 6 0.98% 0.086s | 24 | 44
false false | Level(2) 786 232 574 563 50 8.16% 0.078s | 25 | 46
false false Level(3) 782 232 575 559 54 8.81% 0.076 s 25 46
false false | Level(4) 780 232 568 555 58 9.46% 0.068s | 25 | 46
false false Level(5) 780 232 568 555 58 9.46% 0.083s | 25 46
false false | (AND): [Level(1),RoGPkg(javax.crypto)] 876 170 387 599 14 2.28% 0.053s | 22 | 39
false false (AND): [Level(2),RoGPkg(javax.crypto)] 847 170 433 573 40 6.53% 0.080s | 22 | 41
false false (AND): [Level(3),RoGPkg(javax.crypto)] 843 170 431 569 44 7.18% 0.057s | 22 | 41
false false (AND): [Level(4),RoGPkg(javax.crypto)] 842 170 429 566 47 7.67% 0.058s | 23 | 41
false false (AND): [Level(5),RoGPkg(javax.crypto)] 842 170 429 566 47 7.67% 0.058s | 23 41
false false (AND): [Level(1),RoGCls(javax.crypto.Cipher)] 969 56 125 583 30 4.89% 0.044s | 19 | 34
false false (AND): [Level(2),RoGCls(javax.crypto.Cipher)] 957 56 140 572 41 6.69% 0.057s | 19 | 34
false false | (AND): [Level(3),RoGCls(javax.crypto.Cipher)] 956 56 140 | 566 47 7.67% 0.058s | 19 | 34
false false (AND): [Level(4),RoGCls(javax.crypto.Cipher)] 956 56 140 566 47 7.67% 0.048s | 19 | 34
false false (AND): [Level(5),RoGCls(javax.crypto.Cipher)] 956 56 140 566 47 7.67% 0.046s | 19 | 34
false false (AND): [Level(1),IISCls] 947 74 169 591 22 3.59% 0.047s | 19 | 34
false false (AND): [Level(2),IISCls] 938 74 172 578 35 5.71% 0.047 s 20 35
false false (AND): [Level(3),IISCls] 938 74 172 578 35 5.71% 0.047s | 20 | 35
false false (AND): [Level(4),IISCls] 938 74 172 578 35 5.71% 0.048 s 20 35
false false (AND): [Level(5),IISClIs] 938 74 172 578 35 5.71% 0.047s | 20 | 35
false false (AND): [Level(1),IISOrSubPkg] 832 214 451 599 14 2.28% 0.058 s 23 43
false false (AND): [Level(2),IISOrSubPkg] 799 214 489 569 44 7.18% 0.063 s 24 | 44
false false (AND): [Level(3),IISOrSubPkg] 798 214 488 569 44 7.18% 0.063s | 24 | 45
false false (AND): [Level(4),IISOrSubPkg] 798 214 488 569 44 7.18% 0.078 s 24 | 45
false false (AND): [Level(5),IISOrSubPkg] 798 214 488 569 44 7.18% 0.063s | 24 | 45
false false (OR): [Level(1),RoGPkg(javax.crypto)] 796 232 563 577 36 5.87% 0.067s | 25 | 46
false false (OR): [Level(2),RoGPkg(javax.crypto)] 782 232 574 556 57 9.30% 0.065s | 25 | 47
false false (OR): [Level(3),RoGPkg(javax.crypto)] 781 232 573 556 57 9.30% 0.065s | 25 46
false false (OR): [Level(4),RoGPkg(javax.crypto)] 780 232 568 555 58 9.46% 0.065s | 25 | 46
false false (OR): [Level(5),RoGPkg(javax.crypto)] 780 232 568 555 58 9.46% 0.065s | 25 | 46
false false | (OR): [Level(1),RoGCls(javax.crypto.Cipher)] 810 232 532 583 30 4.89% 0.062s | 24 | 45
false false (OR): [Level(2),RoGCls(javax.crypto.Cipher)] 784 232 573 556 57 9.30% 0.068s | 25 | 46
false false (OR): [Level(3),RoGCls(javax.crypto.Cipher)] 781 232 573 556 57 9.30% 0.065s | 25 46
false false (OR): [Level(4),RoGCls(javax.crypto.Cipher)] 780 232 568 555 58 9.46% 0.065s | 25 | 46
false false (OR): [Level(5),RoGCls(javax.crypto.Cipher)] 780 232 568 555 58 9.46% 0.065s | 25 | 46
false false (OR): [Level(1),IISCls] 800 232 547 583 30 4.89% 0.068 s 25 46
false false (OR): [Level(2),IISCls] 782 232 570 556 57 9.30% 0.065 s 25 46
false false (OR): [Level(3),IISCls] 780 232 568 555 58 9.46% 0.066s | 25 | 46
false false (OR): [Level(4),IISCls] 780 232 568 555 58 9.46% 0.065 s 25 46
false false (OR): [Level(5),IISCls] 780 232 568 555 58 9.46% 0.065s | 25 | 46
false false (OR): [Level(1),IISOrSubPkg] 789 232 562 565 48 7.83% 0.065s | 25 | 46
false false (OR): [Level(2),I1ISOrSubPkg] 781 232 569 556 57 9.30% 0.066s | 25 | 46
false false (OR): [Level(3),IISOrSubPkg] 780 232 568 555 58 9.46% 0.066s | 25 | 46
false false (OR): [Level(4),IISOrSubPkg] 780 232 568 555 58 9.46% 0.065 s 25 46
false false (OR): [Level(5),IISOrSubPkg] 780 232 568 555 58 9.46% 0.065 s 25 46
false false (AND): [RoGPkg(javax.crypto),lISOrSubPkg] 850 162 384 574 39 6.36% 0.054s [22 | 40
false false (AND): [RoGPkg(javax.crypto),IISCls] 951 61 152 573 40 6.53% 0.048s | 19 | 34
false false (OR): [RoGCls(javax.crypto.Cipher),IISOrSubPkg] 795 217 505 558 55 8.97% 0.063s | 24 | 45

53

filter cg heuristic t ees | ings v diff impr time n e
false false | (OR): [RoGCls(javax.crypto.Cipher),IISCls] 903 109 282 | 572 41 6.69% 0.052s | 21 | 38
true false | AlwaysInline 953 59 125 | 543 70 11.42% | 0.065s | 19 | 34
true false | RoGPkg(javax.crypto) 972 40 91 558 55 8.97% 0.063s | 19 | 33
true false | RoGCls(javax.crypto.Cipher) 992 20 50 562 51 8.32% 0.047s | 18 | 32
true false | IISOrSubPkg 968 44 84 552 61 9.95% 0.073s [19 | 33
true false 1ISCls 995 17 30 564 49 7.99% 0.049 s 18 32
true false | Level(1) 980 33 54 553 60 9.79% 0.065s | 18 | 32
true false Level(2) 958 56 124 550 63 10.28% 0.067 s 19 34
true false Level(3) 955 59 132 547 66 10.77% 0.067 s 19 34
true false Level(4) 953 59 125 543 70 11.42% 0.068 s 19 34
true false | Level(5) 953 59 125 543 70 11.42% | 0.068s | 19 | 34
true false (AND): [Level(1),RoGPkg(javax.crypto)] 990 23 42 563 50 8.16% 0.053s | 18 | 32
true false (AND): [Level(2),RoGPkg(javax.crypto)] 974 39 90 564 49 7.99% 0.058 s 19 33
true false (AND): [Level(3),RoGPkg(javax.crypto)] 973 40 93 561 52 8.48% 0.063 s 19 33
true false (AND): [Level(4),RoGPkg(javax.crypto)] 972 40 91 558 55 8.97% 0.059s | 19 | 33
true false (AND): [Level(5),RoGPkg(javax.crypto)] 972 40 91 558 55 8.97% 0.065 s 19 33
true false (AND): [Level(1),RoGCls(javax.crypto.Cipher)] 1001 11 23 567 46 7.50% 0.046s | 18 | 31
true false (AND): [Level(2),RoGCls(javax.crypto.Cipher)] 993 20 50 568 45 7.34% 0.055 s 18 32
true false | (AND): [Level(3),RoGCls(javax.crypto.Cipher)] 992 20 50 562 51 8.32% 0.048s | 18 | 32
true false (AND): [Level(4),RoGCls(javax.crypto.Cipher)] 992 20 50 562 51 8.32% 0.054s | 18 | 32
true false (AND): [Level(5),RoGCls(javax.crypto.Cipher)] 992 20 50 562 51 8.32% 0.048 s 18 32
true false (AND): [Level(1),IISCls] 998 14 23 569 44 7.18% 0.047 s 18 32
true false (AND): [Level(2),IISCIs] 995 17 30 564 49 7.99% 0.049 s 18 32
true false (AND): [Level(3),IISCls] 995 17 30 564 49 7.99% 0.048 s 18 32
true false (AND): [Level(4),IISCls] 995 17 30 564 49 7.99% 0.049 s 18 32
true false (AND): [Level(5),IISClIs] 995 17 30 564 49 7.99% 0.049 s 18 32
true false (AND): [Level(1),IISOrSubPkg] 983 30 50 555 58 9.46% 0.068 s 18 32
true false (AND): [Level(2),IISOrSubPkg] 968 44 84 552 61 9.95% 0.065s | 19 | 33
true false (AND): [Level(3),IISOrSubPkg] 968 44 84 552 61 9.95% 0.065s | 19 | 33
true false (AND): [Level(4),IISOrSubPkg] 968 44 84 552 61 9.95% 0.065s | 19 | 33
true false (AND): [Level(5),IISOrSubPkg] 968 44 84 552 61 9.95% 0.066 s 19 33
true false (OR): [Level(1),RoGPkg(javax.crypto)] 964 50 107 556 57 9.30% 0.066s | 19 | 34
true false (OR): [Level(2),RoGPkg(javax.crypto)] 956 57 125 544 69 11.26% | 0.068s | 19 | 34
true false | (OR): [Level(3),RoGPkg(javax.crypto)] 954 59 130 | 544 69 11.26% | 0.067s | 19 | 34
true false (OR): [Level(4),RoGPkg(javax.crypto)] 953 59 125 543 70 11.42% | 0.068s | 19 | 34
true false (OR): [Level(5),RoGPkg(javax.crypto)] 953 59 125 543 70 11.42% 0.067 s 19 34
true false (OR): [Level(1),RoGCls(javax.crypto.Cipher)] 968 46 91 554 59 9.62% 0.064s | 19 | 33
true false (OR): [Level(2),RoGCls(javax.crypto.Cipher)] 956 57 125 544 69 11.26% | 0.067s | 19 | 34
true false (OR): [Level(3),RoGCls(javax.crypto.Cipher)] 954 59 130 544 69 11.26% 0.073 s 19 34
true false (OR): [Level(4),RoGCls(javax.crypto.Cipher)] 953 59 125 543 70 11.42% | 0.095s | 19 | 34
true false (OR): [Level(5),RoGCls(javax.crypto.Cipher)] 953 59 125 543 70 11.42% 0.076 s 19 34
true false (OR): [Level(1),IISCls] 969 44 88 546 67 10.93% 0.066 s 19 33
true false (OR): [Level(2),IISCls] 955 57 123 544 69 11.26% 0.068 s 19 34
true false (OR): [Level(3),IISCls] 953 59 125 543 70 11.42% 0.068 s 19 34
true false (OR): [Level(4),IISCls] 953 59 125 543 70 11.42% 0.069 s 19 34
true false (OR): [Level(5),IISCls] 953 59 125 543 70 11.42% 0.068 s 19 34
true false (OR): [Level(1),IISOrSubPkg] 961 51 107 543 70 11.42% 0.067 s 19 34
true false (OR): [Level(2),IISOrSubPkg] 955 57 123 544 69 11.26% | 0.068s | 19 | 34
true false (OR): [Level(3),I1SOrSubPkg] 953 59 125 543 70 11.42% 0.070 s 19 34
true false (OR): [Level(4),IISOrSubPkg] 953 59 125 543 70 11.42% | 0.069s | 19 | 34
true false (OR): [Level(5),IISOrSubPkg] 953 59 125 543 70 11.42% 0.069 s 19 34
true false | (AND): [RoGPkg(javax.crypto),lISOrSubPkg] 976 36 74 563 50 8.16% 0.057s | 19 | 33
true false (AND): [RoGPkg(javax.crypto),IISCls] 996 16 29 565 48 7.83% 0.049s | 18 | 32
true false (OR): [RoGCls(javax.crypto.Cipher),IISOrSubPkg] 964 48 98 544 69 11.26% 0.067 s 19 34
true false | (OR): [RoGCls(javax.crypto.Cipher),IISCls] 982 30 71 561 52 8.48% 0.056s | 19 | 33
false true | Alwayslnline 739 273 | 947 | 446 | 167 | 27.24% | 0.268s | 27 | 51
false true | RoGPkg(javax.crypto) 814 198 697 | 444 | 169 | 27.57% | 0.195s | 23 | 42
false true | RoGCls(javax.crypto.Cipher) 949 63 227 | 440 | 173 | 28.22% | 0.163s | 19 | 35
false true | IISOrSubPkg 783 229 553 | 579 34 5.55% 0.204s [25 | 46
false true 1ISCls 935 77 180 576 37 6.04% 0.154s | 20 35
false true Level(1) 827 273 735 637 -24 -3.92% 0.216s | 25 46
false true Level(2) 759 273 936 518 95 15.50% | 0.221s | 27 | 51
false true Level(3) 743 273 954 457 156 25.45% 0.227s | 27 51
false true Level(4) 739 273 947 446 167 27.24% 0.228s | 27 | 51
false true Level(5) 739 273 947 446 167 27.24% 0.225s | 27 51
false true (AND): [Level(1),RoGPkg(javax.crypto)] 877 198 576 613 0 0.00% 0.175s | 22 | 40
false true (AND): [Level(2),RoGPkg(javax.crypto)] 827 198 697 496 117 19.09% 0.186s | 23 42

54

filter cg heuristic t ees | ings v diff impr time n e
false true (AND): [Level(3),RoGPkg(javax.crypto)] 815 198 699 447 | 166 | 27.08% | 0.189s | 23 | 42
false true (AND): [Level(4),RoGPkg(javax.crypto)] 814 198 697 444 | 169 | 27.57% | 0.196s | 23 | 42
false true (AND): [Level(5),RoGPkg(javax.crypto)] 814 198 697 444 169 27.57% 0.189s | 23 42
false true (AND): [Level(1),RoGCls(javax.crypto.Cipher)] 972 63 158 590 23 3.75% 0.153s | 19 | 34
false true (AND): [Level(2),RoGCls(javax.crypto.Cipher)] 954 63 227 486 | 127 | 20.72% | 0.161s | 19 | 35
false true | (AND): [Level(3),RoGCls(javax.crypto.Cipher)] 949 63 227 | 440 | 173 | 28.22% | 0.158s | 19 | 35
false true (AND): [Level(4),RoGCls(javax.crypto.Cipher)] 949 63 227 440 | 173 | 28.22% | 0.158s | 19 | 35
false true (AND): [Level(5),RoGCls(javax.crypto.Cipher)] 949 63 227 440 173 28.22% 0.157 s 19 35
false true (AND): [Level(1),IISCls] 944 77 177 589 24 3.92% 0.150 s 19 34
false true (AND): [Level(2),IISCls] 935 77 180 576 37 6.04% 0.152s | 20 35
false true (AND): [Level(3),IISCls] 935 77 180 576 37 6.04% 0.152s | 20 | 35
false true (AND): [Level(4),IISCls] 935 77 180 576 37 6.04% 0.155s | 20 35
false true (AND): [Level(5),IISClIs] 935 77 180 576 37 6.04% 0.157s | 20 35
false true (AND): [Level(1),IISOrSubPkg] 824 229 501 613 0 0.00% 0.188s | 24 | 44
false true (AND): [Level(2),IISOrSubPkg] 786 229 553 583 30 4.89% 0.207s | 25 46
false true (AND): [Level(3),IISOrSubPkg] 783 229 553 579 34 5.55% 0.201s | 25 46
false true (AND): [Level(4),IISOrSubPkg] 783 229 553 579 34 5.55% 0.202s | 25 46
false true (AND): [Level(5),IISOrSubPkg] 783 229 553 579 34 5.55% 0.201s | 25 46
false true (OR): [Level(1),RoGPkg(javax.crypto)] 759 273 937 465 148 | 24.14% | 0.231s | 27 | 50
false true (OR): [Level(2),RoGPkg(javax.crypto)] 742 273 955 447 | 166 | 27.08% | 0.224s | 27 | 51
false true (OR): [Level(3),RoGPkg(javax.crypto)] 740 273 952 447 166 27.08% 0.228s | 27 | 51
false true (OR): [Level(4),RoGPkg(javax.crypto)] 739 273 947 446 | 167 | 27.24% | 0.227s | 27 | 51
false true (OR): [Level(5),RoGPkg(javax.crypto)] 739 273 947 446 167 27.24% 0.227s | 27 | 51
false true (OR): [Level(1),RoGCls(javax.crypto.Cipher)] 800 273 814 474 | 139 | 22.68% | 0.211s | 26 | 47
false true (OR): [Level(2),RoGCls(javax.crypto.Cipher)] 749 273 952 456 | 157 | 25.61% | 0.222s | 27 | 51
false true (OR): [Level(3),RoGCls(javax.crypto.Cipher)] 742 273 964 454 159 25.94% 0.225s | 27 | 51
false true (OR): [Level(4),RoGCls(javax.crypto.Cipher)] 739 273 947 446 | 167 | 27.24% | 0.230s | 27 | 51
false true (OR): [Level(5),RoGCls(javax.crypto.Cipher)] 739 273 947 446 | 167 | 27.24% | 0.226s | 27 | 51
false true (OR): [Level(1),I1SCls] 797 273 778 613 0 0.00% 0.208s | 26 | 49
false true (OR): [Level(2),IISCls] 755 273 932 511 102 16.64% 0.220s | 27 | 51
false true (OR): [Level(3),IISCIs] 741 273 947 453 160 26.10% 0.234s | 27 | 51
false true (OR): [Level(4),IISCls] 739 273 947 446 | 167 | 27.24% | 0.232s | 27 | 51
false true (OR): [Level(5),IISCls] 739 273 947 446 | 167 | 27.24% | 0.233s | 27 | 51
false true (OR): [Level(1),IISOrSubPkg] 782 273 818 586 27 4.40% 0.219s | 27 | 50
false true (OR): [Level(2),I1SOrSubPkg] 752 273 934 504 109 17.78% 0.224s | 27 | 51
false true (OR): [Level(3),IISOrSubPkg] 741 273 947 453 160 26.10% 0.230s | 27 | 51
false true (OR): [Level(4),IISOrSubPkg] 739 273 947 446 167 27.24% 0.226s | 27 | 51
false true (OR): [Level(5),IISOrSubPkg] 739 273 947 446 167 27.24% 0.237s | 27 | 51
false true (AND): [RoGPkg(javax.crypto),lISOrSubPkg] 843 169 414 580 33 5.38% 0.184s | 22 | 41
false true (AND): [RoGPkg(javax.crypto),IISCls] 949 63 159 573 40 6.53% 0.150s | 19 | 34
false true (OR): [RoGCls(javax.crypto.Cipher),IISOrSubPkg] 773 239 660 436 177 28.87% 0.207s | 25 47
false true (OR): [RoGCls(javax.crypto.Cipher),IISCls] 893 119 379 444 | 169 | 27.57% | 0.171s | 21 38
true true | Alwayslnline 883 129 409 | 433 | 180 | 29.36% | 0.225s | 22 | 40
true true | RoGPkg(javax.crypto) 934 78 290 | 432 | 181 | 29.53% | 0.195s | 20 | 36
true true | RoGCls(javax.crypto.Cipher) 968 44 192 | 436 | 177 | 28.87% | 0.158s | 19 | 34
true true | IISOrSubPkg 959 53 111 561 52 8.48% 0.203s | 19 | 34
true true 1ISCls 994 18 31 562 51 8.32% 0.154 s 18 32
true true Level(1) 966 48 98 555 58 9.46% 0.200 s 19 33
true true Level(2) 911 107 327 474 139 22.68% 0.226s | 21 39
true true Level(3) 889 126 400 438 175 28.55% 0.225s | 22 | 41
true true Level(4) 883 129 409 433 180 29.36% 0.226s | 22 | 40
true true Level(5) 883 129 409 433 180 29.36% 0.229s [22 | 40
true true (AND): [Level(1),RoGPkg(javax.crypto)] 981 33 80 567 46 7.50% 0.177 s 18 32
true true (AND): [Level(2),RoGPkg(javax.crypto)] 944 72 252 475 138 22.51% 0.188s | 20 36
true true (AND): [Level(3),RoGPkg(javax.crypto)] 935 78 292 435 178 29.04% 0.190s | 20 36
true true (AND): [Level(4),RoGPkg(javax.crypto)] 934 78 290 432 181 29.53% 0.189s | 20 36
true true | (AND): [Level(5),RoGPkg(javax.crypto)] 934 78 290 | 432 | 181 | 29.53% | 0.189s | 20 | 36
true true (AND): [Level(1),RoGCls(javax.crypto.Cipher)] 995 18 55 571 42 6.85% 0.153s | 18 | 32
true true (AND): [Level(2),RoGCls(javax.crypto.Cipher)] 975 40 172 476 137 22.35% 0.159 s 19 34
true true (AND): [Level(3),RoGCls(javax.crypto.Cipher)] 968 44 192 436 | 177 | 28.87% | 0.159s | 19 | 34
true true (AND): [Level(4),RoGCls(javax.crypto.Cipher)] 968 44 192 436 | 177 | 28.87% | 0.159s | 19 | 34
true true (AND): [Level(5),RoGCls(javax.crypto.Cipher)] 968 44 192 436 177 28.87% 0.165 s 19 34
true true (AND): [Level(1),IISCls] 997 15 24 567 46 7.50% 0.151s 18 32
true true (AND): [Level(2),IISCIs] 994 18 31 562 51 8.32% 0.155s 18 32
true true (AND): [Level(3),IISCls] 994 18 31 562 51 8.32% 0.153 s 18 32
true true (AND): [Level(4),IISCls] 994 18 31 562 51 8.32% 0.152s 18 32
true true (AND): [Level(5),IISCls] 994 18 31 562 51 8.32% 0.152s 18 32

55

filter cg heuristic t ees | ings v diff impr time n e
true true | (AND): [Level(1),IISOrSubPkg] 979 34 59 559 54 8.81% 0.189s | 18 | 32
true true (AND): [Level(2),IISOrSubPkg] 960 53 109 565 48 7.83% 0.202s | 19 | 34
true true (AND): [Level(3),IISOrSubPkg] 959 53 111 561 52 8.48% 0.201 s 19 34
true true | (AND): [Level(4),IISOrSubPkg] 959 53 111 561 52 8.48% 0.209s | 19 | 34
true true (AND): [Level(5),IISOrSubPkg] 959 53 111 561 52 8.48% 0.205s | 19 | 34
true true | (OR): [Level(1),RoGPkg(javax.crypto)] 896 118 377 | 443 | 170 | 27.73% | 0.224s | 21 | 39
true true (OR): [Level(2),RoGPkg(javax.crypto)] 886 127 409 434 179 29.20% 0.234s | 22 | 40
true true (OR): [Level(3),RoGPkg(javax.crypto)] 884 129 414 434 179 29.20% 0.227s | 22 | 40
true true (OR): [Level(4),RoGPkg(javax.crypto)] 883 129 409 433 180 29.36% 0.227s | 22 | 40
true true (OR): [Level(5),RoGPkg(javax.crypto)] 883 129 409 433 180 29.36% 0.229s | 22 | 40
true true (OR): [Level(1),RoGCls(javax.crypto.Cipher)] 912 103 294 435 178 29.04% 0.206s | 21 38
true true (OR): [Level(2),RoGCls(javax.crypto.Cipher)] 889 126 398 441 172 | 28.06% | 0.227s | 22 | 41
true true (OR): [Level(3),RoGCls(javax.crypto.Cipher)] 886 129 426 441 172 28.06% 0.225s | 22 | 41
true true (OR): [Level(4),RoGCls(javax.crypto.Cipher)] 883 129 409 | 433 | 180 | 29.36% | 0.240s | 22 [40
true true (OR): [Level(5),RoGCls(javax.crypto.Cipher)] 883 129 409 433 180 | 29.36% | 0.228s | 22 | 40
true true (OR): [Level(1),IISCls] 947 67 147 554 59 9.62% 0.209 s 19 34
true true | (OR): [Level(2),IISCls] 908 108 326 | 468 | 145 | 23.65% | 0.224s | 21 | 39
true true | (OR): [Level(3),IISCls] 887 126 | 393 | 434 | 179 | 29.20% | 0.227s | 22 | 41
true true | (OR): [Level(4),IISCls] 883 129 | 409 | 433 | 180 | 29.36% | 0.227s | 22 | 40
true true | (OR): [Level(5),IISCls] 883 129 | 409 | 433 | 180 | 29.36% | 0.233s | 22 | 40
true true (OR): [Level(1),IISOrSubPkg] 940 74 176 556 57 9.30% 0.224s | 20 35
true true (OR): [Level(2),IISOrSubPkg] 907 108 328 464 149 24.31% 0.247s | 21 39
true true (OR): [Level(3),IISOrSubPkg] 887 126 393 434 179 29.20% 0.237s | 22 | 41
true true | (OR): [Level(4),IISOrSubPkg] 883 129 | 409 | 433 | 180 | 29.36% | 0.228s | 22 | 40
true true | (OR): [Level(5),IISOrSubPkg] 883 129 | 409 | 433 | 180 | 29.36% | 0.228s | 22 | 40
true true (AND): [RoGPkg(javax.crypto),lISOrSubPkg] 976 36 78 569 44 7.18% 0.181s 19 33
true true (AND): [RoGPkg(javax.crypto),IISCls] 996 16 29 565 48 7.83% 0.152s | 18 | 32
true true (OR): [RoGCls(javax.crypto.Cipher),IISOrSubPkg] 914 98 309 425 188 30.67% 0.210s | 21 39
true true | (OR): [RoGCls(javax.crypto.Cipher),IISCls] 955 57 218 | 433 | 180 | 29.36% | 0.172s [19 [35

Table A.4.: Results for a minimal overlap threshold of 0% (violations intra: 1105)

filter cg heuristic t ees | ings v diff impr time n e
false false Alwayslnline 780 232 568 1069 36 3.26% 0.283 s 25 46
false | false | RoGPkg(javax.crypto) 842 170 | 429 | 1076 29 2.62% 0.158s | 23 | 41
false | false | RoGCls(javax.crypto.Cipher) 956 56 140 1065 40 3.62% 0.094s | 19 | 34
false false 1ISOrSubPkg 798 214 488 1081 24 2.17% 0.088 s 24 45
false false 1ISCls 938 74 172 1071 34 3.08% 0.063 s 20 35
false false | Level(1) 826 232 512 1133 -28 -2.53% 0.081s | 24 | 44
false false Level(2) 786 232 574 1082 23 2.08% 0.081s 25 46
false false Level(3) 782 232 575 1076 29 2.62% 0.073 s 25 46
false false | Level(4) 780 232 568 1069 36 3.26% 0.084s | 25 | 46
false false | Level(5) 780 232 568 1069 36 3.26% 0.067s | 25 | 46
false false (AND): [Level(1), RoGPkg(javax.crypto)] 876 170 387 1115 -10 -0.90% 0.055s 22 39
false false (AND): [Level(2), RoGPkg(javax.crypto)] 847 170 433 1088 17 1.54% 0.066s | 22 | 41
false false (AND): [Level(3), RoGPkg(javax.crypto)] 843 170 431 1082 23 2.08% 0.066 s 22 41
false false (AND): [Level(4), RoGPkg(javax.crypto)] 842 170 429 1076 29 2.62% 0.061s | 23 | 41
false false (AND): [Level(5), RoGPkg(javax.crypto)] 842 170 429 1076 29 2.62% 0.066s | 23 | 41
false false (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 969 56 125 1082 23 2.08% 0.055 s 19 | 34
false false (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 957 56 140 1076 29 2.62% 0.046 s 19 | 34
false false (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 956 56 140 1065 40 3.62% 0.045 s 19 34
false false (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 956 56 140 1065 40 3.62% 0.045 s 19 | 34
false false (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 956 56 140 1065 40 3.62% 0.045 s 19 | 34
false false (AND): [Level(1), IISCls] 947 74 169 1090 15 1.36% 0.046 s 19 | 34
false false (AND): [Level(2), IISCls] 938 74 172 1071 34 3.08% 0.047 s 20 35
false false (AND): [Level(3), IISCls] 938 74 172 1071 34 3.08% 0.047s | 20 | 35
false false (AND): [Level(4), IISCls] 938 74 172 1071 34 3.08% 0.047 s 20 35
false false (AND): [Level(5), IISCls] 938 74 172 1071 34 3.08% 0.047s | 20 | 35
false false (AND): [Level(1), IISOrSubPkg] 832 214 451 1117 -12 -1.09% 0.072s | 23 | 43
false false (AND): [Level(2), IISOrSubPkg] 799 214 489 1081 24 2.17% 0.062 s 24 44
false false (AND): [Level(3), IISOrSubPkg] 798 214 488 1081 24 2.17% 0.062's 24 | 45
false false (AND): [Level(4), IISOrSubPkg] 798 214 488 1081 24 2.17% 0.062 s 24 45
false false (AND): [Level(5), IISOrSubPkg] 798 214 488 1081 24 2.17% 0.062 s 24 45
false false (OR): [Level(1), RoGPkg(javax.crypto)] 796 232 563 1097 8 0.72% 0.064 s 25 46
false false (OR): [Level(2), RoGPkg(javax.crypto)] 782 232 574 1070 35 3.17% 0.069s | 25 | 47
false false (OR): [Level(3), RoGPkg(javax.crypto)] 781 232 573 1070 35 3.17% 0.067s | 25 | 46

56

filter cg heuristic t ees | ings v diff impr time n e
false false (OR): [Level(4), RoGPkg(javax.crypto)] 780 232 568 1069 36 3.26% 0.066s | 25 | 46
false false (OR): [Level(5), RoGPkg(javax.crypto)] 780 232 568 1069 36 3.26% 0.066s | 25 | 46
false false (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 810 232 532 1108 -3 -0.27% 0.061 s 24 | 45
false false (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 784 232 573 1070 35 3.17% 0.065s | 25 | 46
false false (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 781 232 573 1070 35 3.17% 0.065s | 25 | 46
false | false | (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 780 232 | 568 1069 36 3.26% 0.065s | 25 | 46
false false (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 780 232 568 1069 36 3.26% 0.064s | 25 | 46
false false (OR): [Level(1), IISCIs] 800 232 547 1102 3 0.27% 0.062s | 25 | 46
false false | (OR): [Level(2), IISCls] 782 232 570 1070 35 3.17% 0.064s | 25 | 46
false false (OR): [Level(3), IISCls] 780 232 568 1069 36 3.26% 0.065 s 25 46
false false (OR): [Level(4), IISCls] 780 232 568 1069 36 3.26% 0.065s | 25 | 46
false false (OR): [Level(5), IISCls] 780 232 568 1069 36 3.26% 0.065s | 25 | 46
false false (OR): [Level(1), IISOrSubPkg] 789 232 562 1083 22 1.99% 0.064 s 25 46
false false | (OR): [Level(2), IISOrSubPkg] 781 232 569 1070 35 3.17% 0.064s | 25 | 46
false false (OR): [Level(3), IISOrSubPkg] 780 232 568 1069 36 3.26% 0.065s | 25 | 46
false false (OR): [Level(4), IISOrSubPkg] 780 232 568 1069 36 3.26% 0.065 s 25 46
false false (OR): [Level(5), IISOrSubPkg] 780 232 568 1069 36 3.26% 0.068s | 25 | 46
false false (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 850 162 384 1085 20 1.81% 0.086 s 22 40
false false (AND): [RoGPkg(javax.crypto), IISCls] 951 61 152 1068 37 3.35% 0.046 s 19 | 34
false false (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 795 217 505 1069 36 3.26% 0.063s | 24 | 45
false false (OR): [RoGCls(javax.crypto.Cipher), IISCls] 903 109 282 1071 34 3.08% 0.057 s 21 38
true false Alwayslnline 942 70 144 1042 63 5.70% 0.064 s 19 35
true false | RoGPkg(javax.crypto) 967 45 98 1058 47 4.25% 0.058s | 19 | 33
true false | RoGCls(javax.crypto.Cipher) 992 20 50 1058 47 4.25% 0.047s | 18 | 32
true false 1I1SOrSubPkg 957 55 103 1051 54 4.89% 0.064 s 19 34
true false 1ISCls 992 20 38 1053 52 4.71% 0.048 s 18 32
true false Level(1) 970 43 72 1046 59 5.34% 0.061 s 19 33
true false | Level(2) 947 67 143 1054 51 4.62% 0.066 s 19 | 34
true false Level(3) 944 70 151 1049 56 5.07% 0.067 s 20 35
true false Level(4) 942 70 144 1042 63 5.70% 0.067 s 19 35
true false Level(5) 942 70 144 1042 63 5.70% 0.068 s 19 35
true false (AND): [Level(1), RoGPkg(javax.crypto)] 986 27 48 1058 47 4.25% 0.054 s 18 | 32
true false (AND): [Level(2), RoGPkg(javax.crypto)] 969 44 97 1069 36 3.26% 0.057 s 19 | 33
true false | (AND): [Level(3), RoGPkg(javax.crypto)] 968 45 100 1064 41 3.71% 0.058s | 19 | 33
true false (AND): [Level(4), RoGPkg(javax.crypto)] 967 45 98 1058 47 4.25% 0.057 s 19 | 33
true false (AND): [Level(5), RoGPkg(javax.crypto)] 967 45 98 1058 47 4.25% 0.064 s 19 33
true false (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 1001 11 23 1058 47 4.25% 0.047 s 18 | 31
true false (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 993 20 50 1069 36 3.26% 0.063 s 18 | 32
true false (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 992 20 50 1058 47 4.25% 0.047 s 18 32
true false (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 992 20 50 1058 47 4.25% 0.054 s 18 | 32
true false (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 992 20 50 1058 47 4.25% 0.054 s 18 32
true false (AND): [Level(1), IISCls] 995 17 31 1058 47 4.25% 0.049 s 18 32
true false (AND): [Level(2), IISCls] 992 20 38 1053 52 4.71% 0.049 s 18 32
true false (AND): [Level(3), IISCls] 992 20 38 1053 52 4.71% 0.048 s 18 32
true false (AND): [Level(4), IISCls] 992 20 38 1053 52 4.71% 0.049 s 18 32
true false (AND): [Level(5), IISCls] 992 20 38 1053 52 4.71% 0.053 s 18 32
true false (AND): [Level(1), IISOrSubPkg] 973 40 68 1048 57 5.16% 0.061 s 19 33
true false (AND): [Level(2), IISOrSubPkg] 957 55 103 1051 54 4.89% 0.071s 19 34
true false (AND): [Level(3), IISOrSubPkg] 957 55 103 1051 54 4.89% 0.066 s 19 34
true false (AND): [Level(4), IISOrSubPkg] 957 55 103 1051 54 4.89% 0.071 s 19 34
true false (AND): [Level(5), IISOrSubPkg] 957 55 103 1051 54 4.89% 0.076 s 19 34
true false (OR): [Level(1), RoGPkg(javax.crypto)] 953 61 126 1055 50 4.52% 0.066 s 19 | 34
true false (OR): [Level(2), RoGPkg(javax.crypto)] 945 68 144 1043 62 5.61% 0.074s | 20 | 35
true false (OR): [Level(3), RoGPkg(javax.crypto)] 943 70 149 1043 62 5.61% 0.077 s 20 35
true false (OR): [Level(4), RoGPkg(javax.crypto)] 942 70 144 1042 63 5.70% 0.072s 19 | 35
true false (OR): [Level(5), RoGPkg(javax.crypto)] 942 70 144 1042 63 5.70% 0.077 s 19 | 35
true false | (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 957 57 110 1052 53 4.80% 0.069s | 19 | 34
true false (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 945 68 144 1043 62 5.61% 0.070s | 20 | 35
true false (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 943 70 149 1043 62 5.61% 0.068 s 20 35
true false (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 942 70 144 1042 63 5.70% 0.071s 19 | 35
true false (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 942 70 144 1042 63 5.70% 0.067 s 19 | 35
true false (OR): [Level(1), IISCIs] 958 55 107 1044 61 5.52% 0.065 s 19 34
true false (OR): [Level(2), IISCls] 944 68 142 1043 62 5.61% 0.067 s 19 35
true false (OR): [Level(3), IISCls] 942 70 144 1042 63 5.70% 0.069 s 19 35
true false (OR): [Level(4), IISCls] 942 70 144 1042 63 5.70% 0.077 s 19 | 35
true false (OR): [Level(5), IISCls] 942 70 144 1042 63 5.70% 0.068 s 19 35
true false (OR): [Level(1), IISOrSubPkg] 950 62 126 1042 63 5.70% 0.069 s 19 34

57

filter cg heuristic t ees | ings v diff impr time n e
true false (OR): [Level(2), IISOrSubPkg] 944 68 142 1043 62 5.61% 0.095 s 19 | 35
true false (OR): [Level(3), IISOrSubPkg] 942 70 144 1042 63 5.70% 0.067 s 19 | 35
true false (OR): [Level(4), IISOrSubPkg] 942 70 144 1042 63 5.70% 0.068 s 19 35
true false (OR): [Level(5), IISOrSubPkg] 942 70 144 1042 63 5.70% 0.068 s 19 | 35
true false (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 971 41 81 1064 41 3.71% 0.058 s 19 | 33
true false (AND): [RoGPkg(javax.crypto), IISCls] 995 17 30 1056 49 4.43% 0.047 s 18 32
true false (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 953 59 117 1042 63 5.70% 0.065 s 19 | 34
true false (OR): [RoGCls(javax.crypto.Cipher), IISCls] 979 33 79 1056 49 4.43% 0.054 s 19 33
false true Alwayslnline 739 273 947 936 169 15.29% 0.276's 27 51
false | true | RoGPkg(javax.crypto) 814 198 | 697 928 177 | 16.02% | 0.204s | 23 | 42
false true | RoGCls(javax.crypto.Cipher) 949 63 227 919 186 | 16.83% | 0.156s [19 | 35
false true 1ISOrSubPkg 783 229 553 1093 12 1.09% 0.200 s 25 46
false true 1ISCls 935 77 180 1067 38 3.44% 0.158 s 20 35
false true Level(1) 827 273 735 1167 -62 -5.61% 0.204 s 25 46
false true Level(2) 759 273 936 1023 82 7.42% 0.215s 27 51
false true Level(3) 743 273 954 951 154 13.94% | 0.233s 27 51
false true Level(4) 739 273 947 936 169 15.29% 0.229 s 27 51
false true Level(5) 739 273 947 936 169 15.29% | 0.224 s 27 51
false true (AND): [Level(1), RoGPkg(javax.crypto)] 877 198 576 1129 -24 -2.17% 0.173s | 22 | 40
false true (AND): [Level(2), RoGPkg(javax.crypto)] 827 198 697 990 115 10.41% | 0.189s | 23 | 42
false true (AND): [Level(3), RoGPkg(javax.crypto)] 815 198 699 934 171 15.48% | 0.187 s 23 42
false true (AND): [Level(4), RoGPkg(javax.crypto)] 814 198 697 928 177 | 16.02% | 0.187s | 23 | 42
false true (AND): [Level(5), RoGPkg(javax.crypto)] 814 198 697 928 177 16.02% | 0.184s 23 42
false true (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 972 63 158 1089 16 1.45% 0.151s 19 | 34
false true (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 954 63 227 974 131 11.86% | 0.158 s 19 | 35
false true (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 949 63 227 919 186 16.83% | 0.160s 19 35
false true (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 949 63 227 919 186 | 16.83% | 0.157s 19 | 35
false true (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 949 63 227 919 186 | 16.83% | 0.155s 19 | 35
false true (AND): [Level(1), IISCls] 944 77 177 1086 19 1.72% 0.149 s 19 | 34
false true (AND): [Level(2), IISCls] 935 77 180 1067 38 3.44% 0.152's 20 35
false true (AND): [Level(3), IISCls] 935 77 180 1067 38 3.44% 0.162's 20 35
false true (AND): [Level(4), IISCls] 935 77 180 1067 38 3.44% 0.151s 20 35
false true (AND): [Level(5), IISCls] 935 77 180 1067 38 3.44% 0.150s | 20 | 35
false true (AND): [Level(1), IISOrSubPkg] 824 229 501 1139 -34 -3.08% 0.180s | 24 | 44
false true (AND): [Level(2), IISOrSubPkg] 786 229 553 1098 7 0.63% 0.195s 25 46
false true (AND): [Level(3), IISOrSubPkg] 783 229 553 1093 12 1.09% 0.198 s 25 46
false true (AND): [Level(4), IISOrSubPkg] 783 229 553 1093 12 1.09% 0.204 s 25 46
false true (AND): [Level(5), IISOrSubPkg] 783 229 553 1093 12 1.09% 0.200 s 25 46
false true (OR): [Level(1), RoGPkg(javax.crypto)] 759 273 937 960 145 13.12% | 0.220s 27 50
false true (OR): [Level(2), RoGPkg(javax.crypto)] 742 273 955 937 168 15.20% | 0.222s | 27 | 51
false true (OR): [Level(3), RoGPkg(javax.crypto)] 740 273 952 937 168 15.20% | 0.236s 27 51
false true (OR): [Level(4), RoGPkg(javax.crypto)] 739 273 947 936 169 15.29% | 0.233s | 27 | 51
false true (OR): [Level(5), RoGPkg(javax.crypto)] 739 273 947 936 169 15.29% | 0.222s | 27 | 51
false true (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 800 273 814 980 125 11.31% | 0.205s 26 | 47
false true (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 749 273 952 948 157 | 14.21% | 0.220s | 27 | 51
false true (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 742 273 964 945 160 14.48% | 0.230s 27 51
false true (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 739 273 947 936 169 | 15.29% | 0.222s | 27 | 51
false true (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 739 273 947 936 169 15.29% | 0.232s | 27 | 51
false true (OR): [Level(1), IISCls] 797 273 778 1136 -31 -2.81% 0.207 s 26 49
false true (OR): [Level(2), IISCls] 755 273 932 1011 94 8.51% 0.218 s 27 51
false true (OR): [Level(3), IISCls] 741 273 947 944 161 14.57% | 0.224s 27 51
false true (OR): [Level(4), IISCls] 739 273 947 936 169 15.29% 0.230 s 27 51
false true (OR): [Level(5), IISCls] 739 273 947 936 169 15.29% 0.228 s 27 51
false true (OR): [Level(1), IISOrSubPkg] 782 273 818 1105 0 0.00% 0.216s 27 50
false true (OR): [Level(2), IISOrSubPkg] 752 273 934 1003 102 9.23% 0.222 s 27 51
false true (OR): [Level(3), IISOrSubPkg] 741 273 947 944 161 14.57% | 0.221s | 27 | 51
false true (OR): [Level(4), IISOrSubPkg] 739 273 947 936 169 15.29% | 0.229s 27 51
false true (OR): [Level(5), IISOrSubPkg] 739 273 947 936 169 15.29% 0.229 s 27 51
false true (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 843 169 414 1093 12 1.09% 0.180 s 22 41
false true (AND): [RoGPkg(javax.crypto), IISCls] 949 63 159 1068 37 3.35% 0.151s 19 | 34
false true (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 773 239 660 927 178 16.11% | 0.211s | 25 | 47
false true (OR): [RoGCls(javax.crypto.Cipher), IISCls] 893 119 379 921 184 16.65% | 0.172s 21 38
true true AlwaysInline 874 138 428 924 181 16.38% | 0.235s | 22 | 41
true true | RoGPkg(javax.crypto) 926 86 304 919 186 | 16.83% | 0.198s | 20 | 36
true true | RoGCls(javax.crypto.Cipher) 968 44 192 912 193 | 17.47% | 0.156s | 19 | 34
true true 11SOrSubPkg 949 63 128 1055 50 4.52% 0.202 s 19 35
true true 1ISCls 991 21 39 1049 56 5.07% 0.151s 18 | 32

58

filter cg heuristic t ees | ings v diff impr time n e
true true Level(1) 955 61 125 1052 53 4.80% 0.196's 19 | 34
true true | Level(2) 901 117 | 350 969 136 | 12.31% | 0.220s | 21 | 40
true true Level(3) 880 135 419 931 174 15.75% | 0.227 s 22 41
true true | Level(4) 874 138 | 428 924 181 | 16.38% | 0.233s | 22 | 41
true true | Level(5) 874 138 | 428 924 181 | 16.38% | 0.224s | 22 | 41
true true (AND): [Level(1), RoGPkg(javax.crypto)] 973 41 95 1062 43 3.89% 0.176 s 19 | 33
true true (AND): [Level(2), RoGPkg(javax.crypto)] 935 81 270 970 135 12.22% 0.192s 20 36
true true (AND): [Level(3), RoGPkg(javax.crypto)] 927 86 306 925 180 16.29% | 0.186s 20 36
true true (AND): [Level(4), RoGPkg(javax.crypto)] 926 86 304 919 186 | 16.83% | 0.186s | 20 | 36
true true (AND): [Level(5), RoGPkg(javax.crypto)] 926 86 304 919 186 16.83% 0.185 s 20 36
true true (AND): [Level(1), RoGCls(javax.crypto.Cipher)] 995 18 55 1062 43 3.89% 0.154 s 18 32
true true (AND): [Level(2), RoGCls(javax.crypto.Cipher)] 975 40 172 961 144 | 13.03% | 0.157s 19 | 34
true true (AND): [Level(3), RoGCls(javax.crypto.Cipher)] 968 44 192 912 193 17.47% | 0.157 s 19 34
true true (AND): [Level(4), RoGCls(javax.crypto.Cipher)] 968 44 192 912 193 17.47% | 0.162s 19 | 34
true true (AND): [Level(5), RoGCls(javax.crypto.Cipher)] 968 44 192 912 193 17.47% | 0.156s 19 | 34
true true (AND): [Level(1), IISCls] 994 18 32 1054 51 4.62% 0.153 s 18 32
true true (AND): [Level(2), IISCls] 991 21 39 1049 56 5.07% 0.153s | 18 | 32
true true (AND): [Level(3), IISCls] 991 21 39 1049 56 5.07% 0.151s 18 32
true true (AND): [Level(4), IISCls] 991 21 39 1049 56 5.07% 0.159s | 18 | 32
true true (AND): [Level(5), IISCls] 991 21 39 1049 56 5.07% 0.152s | 18 | 32
true true (AND): [Level(1), IISOrSubPkg] 971 43 76 1056 49 4.43% 0.184s | 19 | 33
true true (AND): [Level(2), IISOrSubPkg] 950 63 126 | 1059 46 4.16% 0.197s | 20 | 35
true true (AND): [Level(3), IISOrSubPkg] 949 63 128 1055 50 4.52% 0.203 s 19 35
true true (AND): [Level(4), IISOrSubPkg] 949 63 128 1055 50 4.52% 0.208s | 19 | 35
true true (AND): [Level(5), IISOrSubPkg] 949 63 128 1055 50 4.52% 0.208 s 19 | 35
true true (OR): [Level(1), RoGPkg(javax.crypto)] 887 127 396 933 172 15.57% | 0.225s 21 40
true true (OR): [Level(2), RoGPkg(javax.crypto)] 877 136 428 925 180 16.29% | 0.232s 22 41
true true (OR): [Level(3), RoGPkg(javax.crypto)] 875 138 433 925 180 16.29% 0.240 s 22 41
true true (OR): [Level(4), RoGPkg(javax.crypto)] 874 138 428 924 181 16.38% | 0.235s | 22 | 41
true true (OR): [Level(5), RoGPkg(javax.crypto)] 874 138 428 924 181 16.38% 0.232s 22 41
true true (OR): [Level(1), RoGCls(javax.crypto.Cipher)] 906 110 313 934 171 15.48% | 0.206s 21 38
true true (OR): [Level(2), RoGCls(javax.crypto.Cipher)] 880 135 417 933 172 15.57% | 0.224s | 22 | 41
true true (OR): [Level(3), RoGCls(javax.crypto.Cipher)] 877 138 445 933 172 15.57% | 0.225s | 22 | 42
true true (OR): [Level(4), RoGCls(javax.crypto.Cipher)] 874 138 428 924 181 16.38% | 0.227s 22 41
true true (OR): [Level(5), RoGCls(javax.crypto.Cipher)] 874 138 428 924 181 16.38% | 0.228s | 22 | 41
true true (OR): [Level(1), IISCIs] 935 81 175 1059 46 4.16% 0.210s 20 35
true true (OR): [Level(2), IISCls] 898 118 | 349 958 147 | 13.30% | 0.222s | 21 | 40
true true (OR): [Level(3), IISCls] 878 135 | 412 924 181 | 16.38% | 0.226s | 22 | 41
true true (OR): [Level(4), IISCls] 874 138 428 924 181 16.38% | 0.225s 22 41
true true (OR): [Level(5), IISCls] 874 138 | 428 924 181 | 16.38% | 0.225s | 22 | 41
true true (OR): [Level(1), IISOrSubPkg] 927 88 202 1053 52 4.71% 0.216's 20 36
true true (OR): [Level(2), IISOrSubPkg] 897 118 | 351 954 151 | 13.67% | 0.232s | 21 | 40
true true (OR): [Level(3), IISOrSubPkg] 878 135 | 412 924 181 | 16.38% | 0.227s | 22 | 41
true true (OR): [Level(4), IISOrSubPkg] 874 138 428 924 181 16.38% | 0.226's 22 41
true true (OR): [Level(5), IISOrSubPkg] 874 138 | 428 924 181 | 16.38% | 0.227s | 22 | 41
true true (AND): [RoGPkg(javax.crypto), IISOrSubPkg] 971 41 85 1072 33 2.99% 0.183 s 19 33
true true (AND): [RoGPkg(javax.crypto), IISCls] 995 17 30 1056 49 4.43% 0.153s | 18 | 32
true true (OR): [RoGCls(javax.crypto.Cipher), IISOrSubPkg] 911 101 317 911 194 | 17.56% | 0.213s | 21 39
true true (OR): [RoGCls(javax.crypto.Cipher), IISCls] 952 60 226 906 199 18.01% | 0.179s 19 35

59

	Introduction
	Research Questions
	Thesis Structure

	Related Work
	API Misuse
	Pattern-based Anomaly Detection

	Overview
	GROUMs
	Patterns
	Anomaly Detection
	Intra- vs Interprocedural GROUMs

	Interprocedural GROUMs
	Inling GROUMs vs Methods
	Extended GROUMs
	Advanced-Edges

	Inliner
	Inline Heuristics
	Inline Tree

	Virtual Callsites

	Implementation
	Extended GROUMs
	Dependency Manager
	GROUM Input/Output
	GROUM Optimizations

	Inlining Infrastructure
	InlineBuilder
	GroumInliner
	LookupProvider
	InlineHeuristic

	Call-Graphs
	Test Cases
	Interprocedural Pattern Usage Filter

	Evaluation
	Setup
	Constructed Tests
	Real World Tests

	Conclusion
	List of Figures
	References
	Appendix

