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Abstract5

This paper is about programming support for applications that synchronize their data between6

multiple devices – to allow a single user to use an application on multiple devices or to support7

collaboration between multiple users. Examples are (shared) calendars, document editors, task8

lists, finance management, collaborative workflows, and more. Such applications must not impede9

or interrupt the user’s normal workflow – even when the device is offline or has a flaky network10

connection – and preserve the privacy and integrity of the user’s data.11

From the programming perspective, synchronization and availability along with privacy and12

security concerns add significant challenges. This work aims to relieve developers from this com-13

plexity so that they can focus on the business logic of the application. To this end, we design an14

easy-to-use CRDT-based programming model with a built-in encryption and authentication scheme15

that allows coordination-free synchronization of data using untrusted intermediaries without sac-16

rificing data privacy and integrity. We show that our approach is suitable to encrypt state-based17

and delta-state-based CRDTs transparently while retaining coordination freedom. Our evaluation18

highlights that the proposed solution is practical in terms of runtime and memory overhead.19
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1 Introduction25

This paper is about programming support for applications that synchronize their data be-26

tween multiple devices – to allow a single user to use an application on multiple devices or to27

support collaboration between multiple users. Examples are (shared) calendars, document28

editors, task lists, finance management, collaborative workflows, and more. Especially the29

collaborative case has exploded in importance due to the COVID-19 pandemic.30

Such applications must not impede or interrupt the user’s normal workflow – even when31

the device is offline or has a flaky network connection – and they must preserve the privacy32

and integrity of the user’s data. No one likes to be told: “please connect to the internet to33

keep working so that we can observe everything you do.” From the programming perspec-34

tive, the availability requirement along with privacy and integrity concerns add significant35

challenges. This work aims to relieve developers from this complexity so that they can36

focus on the business logic of the application. To this end, we design an easy-to-use CRDT-37

based programming model with a built-in encryption and authentication scheme that allows38

coordination-free synchronization of data using untrusted intermediaries without sacrificing39

privacy and data confidentiality.40
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0:2 Secure Coordination-free Intermediaries for Local-first Software

1.1 Existing Approaches for Collaborative Data Management41

Consider two examples for common approaches to enable collaborating on shared data. In42

Git1, all operations happen on a user’s device, and changes are synchronized by explicit user43

requests (i.e., pull/push a Git repository) to handle conflicts that require the user’s attention.44

The approach taken by Google Docs2 provides synchronization automatically, but Google’s45

central servers need to know about the data to achieve this. Centralized coordination is46

undesirable for two general reasons. First, a central instance may not be available – e.g.,47

when devices are in the same LAN or DTN [6], but not connected to the internet. Second,48

having data be known to Google raises privacy concerns for users and companies that want49

to keep their secrets.50

The need to address the above dilemma between transparent synchronization on the51

one side and loss of privacy and centralized control on the other side led to the proposal52

of local-first software, “a set of principles for software that enables both collaboration and53

ownership for users” [24]. With local-first software, data ownership remains on local devices.54

In addition, there is the expectation that data is synchronized and kept consistent between55

multiple replicas without requiring coordination or manual user intervention. Practically,56

these goals of local-first software are often achieved by using conflict-free replicated data57

types (CRDTs) [47] to store and manage the data of each device.58

A CRDT stores user’s data together with sufficient metadata to enable consistent and59

coordination-free replication in arbitrary network topologies in a transparent way. To enable60

coordination-free replication, CRDTs (and any other coordination-free distributed scheme)61

require that the stored data is processed via “monotonic operations” [21]. In practice, this62

restriction is often circumvented by appropriate designs of data types. In particular, for end-63

user applications that we are targeting, the restriction is not an issue, given that intuitively,64

users always interact with their device in a monotonic fashion, because they only can press,65

click, and touch keys and buttons and not “unpress” a prior action. This intuition is lever-66

aged by recent reactive programming approaches that automatically map user interactions67

to synchronous updates of related CRDTs to enable coordination-free consistency of entire68

applications [31, 32, 33].69

CRDTs are not a silver bullet to replace client-server with peer-to-peer architectures70

because central servers can help with connectivity issues in common scenarios. Consider71

Figure 1 for illustration. Alice (top of Figure 1) uses a local-first calendar application with72

direct peer-to-peer connections on her office computer. While the application is capable of73

synchronizing her calendar with anyone she connects to, her options are limited. She cannot74

synchronize with her laptop at home because it is always off when she is at work, and when75

she is at home, the computer in the office is off. Also, she can synchronize with neither76

Bob nor Charlie. In the former case, because her office is behind a firewall that restricts77

incoming connections and Bob has not configured his NAT to forward the correct ports –78

thus a connection attempt fails in either direction. In the latter case, because Charlie uses79

the application in a Web browser, which does not allow incoming connections at all.80

1.2 Our Proposal81

Connectivity is improved by using intermediaries – third parties which serve as post offices82

that store, forward, eventually discard old messages, and otherwise do not modify them.83

1 https://git-scm.com/
2 https://about.google/intl/docs/

https://git-scm.com/
https://about.google/intl/docs/
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Figure 1 Example illustrating issues with peer-to-peer and intermediary-based synchronization.

Crucially, adding intermediaries combines the advantages of local-first software with those84

of a centralized data store, without relying on coordination by a central entity to ensure85

consistency. Widely known examples of intermediaries are code-hosting platforms such as86

GitHub3. In Figure 1, Iris represents an intermediary between Alice, Charlie, and Bob.87

Because intermediaries never produce changes by themselves and do not have to partici-88

pate in any conflict resolution of their own, it is possible to use many existing solutions as89

intermediaries. GitHub could readily be replaced with another code hoster supporting Git90

or even by direct connections between users if available. Examples of possible intermediaries91

in our setting include storing the replicated data into Dropbox, keeping it on a USB drive,92

on a shared network disk, or using a delay tolerant network (DTN). The last example is93

of particular interest, because DTN is actively developed to make infrastructure more re-94

silient [48, 44] and has a wider range of applicable areas from web browsers [6] to low energy95

wireless communication [7].96

However, with intermediaries the privacy concerns of centralized data stores still persist.97

Iris from Figure 1 can inspect and modify the data. Whenever Alice puts a vacation into98

her calendar, Iris sends her marketing material for trips, flights, and hotels. Iris also puts99

convenient reminders for Alice’s birthday into Bob’s and Charlie’s calendar – directly with100

links to Iris’ own boutique with ideas for presents. In general, without further measures,101

intermediaries violate the data privacy principles of local-first software, in particular, that102

there should be “data confidentiality and privacy by default” and that the user should “retain103

ultimate ownership and control” [24].104

To establish “data confidentiality and privacy by default” in the presence of untrusted105

intermediaries, we introduce a programming model that integrates a new kind of CRDTs,106

called encrypting CRDTs (or enCRDTs for short). An enCRDT adds an abstraction layer107

3 https://github.com/
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0:4 Secure Coordination-free Intermediaries for Local-first Software

around a normal CRDT to protect the data stored in the inner CRDT from inspection or108

modification while still providing coordination-free synchronization of data. To this end,109

we introduce an authenticated encryption with associated data (AEAD) scheme, which we110

argue is secure for coordination-free encryption of data at rest. A major issue of AEAD111

components that we must address is the reuse of parameters accross devices that must112

be globally unique. Ensuring uniqueness is a classical coordination problem – we want to113

minimize the need for synchronization. We discuss how to address this issue with several114

strategies that provide different tradeoffs. Our scheme does not require coordination beyond115

exchanging a secret key once and thus is suitable for decentralized use.116

With enCRDTs in place, data is automatically encrypted and authenticated before mes-117

sages are disseminated, thus intermediaries can forward and replicate data without privacy118

considerations. While primarily motivated by the need to protect stored data from mali-119

cious intermediaries, our solution also protects the data during transport, e.g., for direct120

communication between Alice and Bob. While securing direct communication channels may121

seem like a solved problem – i.e., by using TLS – it has been shown that leaving this task122

to application developers often leads to an insecure system [15, 36].123

High-level abstractions with built-in cryptographic features are considered as an effective124

solution to support developers with writing secure software [1, 18, 30]. The correct direct us-125

age of cryptographic components is challenging in general [34], with 84 % of Apache projects126

containing cryptographic misuses [39]. Especially developers of end-user applications seem127

to have a hard time, with more than 95 % of android applications that use a cryptographic128

API using it incorrectly [25]. Moreover, local-first software is expected to work on many129

different devices, increasing chances for implementation bugs, and teams developing such130

applications are often too small to hire security experts. Our approach addresses the chal-131

lenges by automatically providing suitable guarantees.132

133

In summary, the contributions of this paper are:134

A programming model for systematically using CRDTs for local-first software, which135

clearly separates the core state of a CRDT, which represents the user’s data and the136

metadata for synchronization, from both its programming interface and the communi-137

cation layer (Section 2). The separation allows our approach to be easily embedded138

into existing programming models, such as reactive programming [33], the actor model,139

object-oriented programming, functional programming, or even more special-purpose140

models. The programming model builds the foundation for the rest of our contributions.141

A family of enCRDT implementations for different network requirements (Section 3).142

The enCRDTs reuse the same implementation strategies as other CRDTs and provide143

secure communication as their set of operations. In particular, this allows us to sepa-144

rate reasoning about security concerns, like data confidentiality and authenticity, from145

reasoning about ordination-free consistent synchronization of data.146

A secure scheme to encrypt messages inside enCRDTs suitable for our target scenario of147

local-first software, which precludes the misuse of any of the cryptographic components148

by developers (Section 4). In the same manner that the data model of CRDTs enables au-149

tomatic coordination-free synchronization, our enCRDTs enable correct automatic choice150

of cryptographic primitives and parameters.151

An evaluation of a full implementation of our solution (Section 5) shows that the en-152

cryption overhead is small – with less than 3 ms in the worst case of encrypting large states153

without hardware-accelerated encryption, and only fractions of milliseconds when hardware154

acceleration is available.155
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1 // state definition
2 type Counter = HashMap [ReplicaID , Int]
3

4 // state interpreted as data in the application
5 object Counter :
6 def zero: Counter = HashMap .empty
7

8 extension (c: Counter )
9 def value : Int = c. values .sum

10 def inc(id: ReplicaID ): Counter =
11 HashMap (id -> (c. getOrElse (id , 0) + 1))
12

13 // state is a lattice for replication
14 given Lattice [ Counter ] with
15 def merge (left: Counter , right: Counter ): Counter =
16 left. merged (right){
17 case ((id , v1), (_, v2)) => (id , (v1 max v2))
18 }

Figure 2 Replicated counter split into the state, interpretation as data, and lattice definnition.

2 Systematic and Modular Design of Custom CRDTs156

Conflict-free replicated data types (CRDTs) [47] are a special class of abstract data types157

that enable replication of data across multiple devices with strong eventual consistency158

guarantees. Many data types can be and have been implemented as CRDTs [46] ranging159

all the way to full JSON structures [23] and efficient representations for text [16]. While160

existing work has presented a range of off-the shelf CRDTs implementations, a systematic161

approach to support developers in designing new application-specific CRDTs is still missing.162

The model presented in this section aims to fill this gap.163

The proposed model enables a systematic design of custom CRDTs without requiring164

developers to have expertise in managing distributed systems or data confidentiality and165

authenticity. It combines strategies from state-based CRDTs [47] and delta state replica-166

tion [3] to provide coordination-free replication (using a strong eventual consistent imple-167

mentation [47]), while minimizing the burden on developers. The only expectation is that168

developers provide a correct merge function, whereby for structured data types merge func-169

tions are automatically derived (see Subsection 2.2). In particular, we use the merge function170

to automatically ensure monotonicity of operators, instead of leaving the responsibility to171

correctly implement those to developers.172

2.1 State, Operators, and API173

In our model, the state of a CRDT is always an immutable, but otherwise arbitrary value.174

Its design is driven by the desired operations that must be supported, and the ability to175

define a correct merge function for the state.176

Each CRDT state has associated query operators and update operators (also called mu-177

tators). Query operators are functions over the state that return some query-specific value.178

Mutators transform one state into another state. Note, that state-based CRDT implemen-179

tations usually require that mutators return a state that is larger than the original state180

CVIT 2016
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19 class CounterClass ( replicaID : ReplicaID ):
20 private var current = Counter .zero
21

22 def inc (): Unit = current = current merge current .inc( replicaID )
23 def value: Int = current . value

Figure 3 Embedding of our CRDT design into an object oriented API.

according to a fixed order of all possible states. However, this requirement can be automati-181

cally satisfied by merging the current state with the result of a mutator to change a CRDT.182

Thus, using this approach developers cannot design mutators that produce inconsistencies.183

As a running example, consider the Scala 3 implementation of a replicated counter in184

Figure 2. Line 2 shows the definition of the state, where a replicated counter is represented185

by the built in HashMap associating replica IDs as keys with integers as values. Lines 5-11186

define operators that interpret this state as a counter data type, which has a value and can187

be increased. A counter of zero is the empty map (Line 6), the value of a counter is the sum188

of the values in the map (Line 9), and a counter is incremented by incrementing the value189

associated to the current replica ID. Note, that the incrementing operator returns a counter190

state that only contains the value of the incremented replica, not any other replicas. Finally,191

as the foundation of all ensured guarantees, Line 14 states that a counter is a lattice. We192

discuss lattices in detail in Subsection 2.2, but practically a counter being a lattice requires a193

merge function in Line 15, which must be associative, commutative, and idempotent. Most194

notably, a correct merge function is the only requirement for consistency, while incorrect195

operations only manifest as local application bugs.196

Operators define the data that a CRDT represents. Different state implementations may197

define the same conceptual data, and the same state may represent different data depending198

on the operators. For example, the counter state in Figure 2 can also be used as a version199

vector by providing the suitable comparison operators.200

Our design is non-classical in the sense that mutators do not actually change any state,201

because up until now we have only given the building blocks out of which an abstraction202

that is classically called a CRDT is constructed. The advantage of this “naked” encoding is203

that it can be easily integrated into most programming models, thus making our extensions204

for intermediaries and data confidentiality and authencitiy available to developers no matter205

which programming style they prefer. For example Figure 3 shows an embedding into an206

object-oriented API, where the current state is stored in a private field, which is modified by207

the increment method and accessed by the value method. We believe that readers familiar208

with the actor model will be able to adapt the example on the fly, and Mogk et al. [33] have209

shown how to embed CRDTs into functional reactive programming.210

2.2 Lattice-based Coordination-free Consistency211

The best achievable form of message delivery in a distributed system is at-least-once delivery.212

Consistency without coordination is achieved in such a setting by using a merge function213

m which must be associative, commutative, and idempotent to deal with the shortcom-214

ings of at-least-once message delivery. Concretely, the merge function must be associative215

m(m(x, y), z) = m(x, m(y, z)) to ensure that states can be combined before transmission,216

commutative m(x, y) = m(y, x) because messages may not arrive in order, and idempotent:217

m(x, x) = x to deal with duplicated transmissions. Mathematically speaking such a merge218
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24 given[A: Lattice , B: Lattice ]: Lattice [(A, B)] with
25 def merge (left: (A, B), right : (A, B)): (A, B) =
26 (left._1 merge right._1 , left._2 merge right._2)
27

28 type PNCounter = (Counter , Counter )
29

30 extension (c: PosNegCounter )
31 def value : Int = c._1.value - c._2.value

Figure 4 Composing merge functions to implement a positive-negative counter

function computes the least upper bound t of two states: s = s1 t s2. Thus the state forms219

a join semilattice, or simply a lattice, which explains the naming in Figure 2.220

We encourage readers to convince themselves that the merge function in Figure 2 has221

the three properties. The lattice it operates on are two mappings x, y : id 7→ N which map222

replica IDs to natural numbers (with a default of 0) and merges them such that m(x, y)(id) =223

max(x(id), y(id)), where max computes the maximum of two natural numbers.224

A major advantage of the approach to represent CRDTs as immutable states with as-225

sociated merge functions is composability. As an example, consider that our counter can226

only be incremented, not decremented. A common strategy to address this using CRDTs227

– where we can only increase the state – is to expand the state to represent decrements228

as an addition in another dimension. Figure 4 defines the state of a counter that can be229

incremented and decremented as a pair of two normal counters (Line 28). One counter for230

storing increments, and another for decrements. This construction is commonly referred to231

as a positive-negative counter (PNCounter). The value of this PNCounter, as an example232

for an operation, is the value of the first counter minus the value of the second (Line 31).233

Crucially, this PNCounter is automatically a lattice, without the developer needing to234

write a custom merge function. The reason is that a counter is a lattice, and a pair is also a235

lattice given its components are lattices. To illustrate the latter, the merge function for the236

pair lattice is given in Line 24, which syntactically states that given A and B are lattices,237

the pair (A, B) is also a lattice. The remaining construction of the composed merge function238

for the PNCounter is then so schematic, that the Scala compiler can do it on its own.239

Moreover, consider the implementation of the tuple merge function (Line 26), it simply240

deconstructs the pair into its components, merges the components individually, and recom-241

bines the result into a pair. The same strategy can be used for all non-recursive data types242

built out of components, including maps (the counter in Figure 2 is a special case of the243

map lattice, using the max function on integers to merge the components of the map), sets,244

tuples of arbitrary sizes, and any non-recursive user-defined case class. For example, if we245

want build a new a social media site – that has posts with likes, dislikes, and comments –246

we could define our data type like below (given that LWW is a last-writer-wins lattice), and247

immediately have a coordination-free consistently distributed private space for us and our248

friends. The required merge function is automatically (and correctly) constructed by the249

compiler (composing existing merge functions and generating one for the case class), and250

used by the rest of our approach.251

32 case class SocialPost ( message : LWW[ String ], likes: PNCounter ,252

dislikes : PNCounter , comments : Set[LWW[ String ]]) derive Lattice253

33 type SocialMedia = Set[ SocialPost ]254

CVIT 2016
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While composability of confluent functions (the class of functions that merge belongs to)255

is well known [21], it has only been used to construct lattices in special-purpose languages256

where every construct is confluent. We are not aware of prior work that embeds the use of257

automatic derivation of merge functions (by automatically composing them) into a general-258

purpose language. We achieve this by cleanly separating state definition, operators, and259

merge functions to benefit from the inherent composability of each of the parts and let260

developers recombine them as needed. In contrast, the object-oriented API from Figure 3,261

e.g., is not suitable for automatic composition.262

2.3 Anti-Entropy and Delta Replication263

While the merge function of a lattice addresses the challenges of at-least-once delivery, our264

approach also enables efficient dissemination of messages. Similar to prior work [3], we265

rely on an explicit anti-entropy algorithm to ensure that every update in one replica reaches266

every other replica. As an example for an anti-entropy algorithm consider a simple broadcast267

mechanism and assume that all devices are connected to each other. Periodically each replica268

takes its current full state of a CRDT, serializes the state to a message, and sends the message269

to all other replicas. When such a message is received, it is deserialized, and the resulting270

state is merged into the local state.271

The choice of anti-entropy algorithm determines whether the system is causally consis-272

tent, i.e., whether replicas see changes in the order they happened on a remote replica. The273

broadcast algorithm mentioned above is causally consistent, because it always sends the full274

state – which includes all changes – thus there can be no gaps in the causal history. However,275

always transmitting the entire state is a waste of network resources. Consider the counter276

example, where, every time we increment the counter, only one entry is changed, but the277

complete state will be transmitted. To improve efficiency, we use delta replication [3]. In-278

stead of transmitting the full states, we only transmit a delta state, which has redundancies279

to already transmitted states removed. The delta between states s1 and a larger state s2280

is the smallest state sδ such that merge(s1, sδ) = s2. Where small and large are according281

to the lattice order. As we briefly mentioned in Section 2, the mutator of our counter in282

Figure 2 already produces delta states in the form of the singleton map from the replica ID283

to its new value. Specifically, deltas are normal states as far as the lattice is concerned, and284

can be merged into larger groups.285

An anti-entropy algorithm has to merge deltas in causal order to preserve causal consis-286

tency. This can be done by relying on an ordered network protocol (e.g., TCP), if available,287

and only two devices are involved, or, more generally, by including causality information to-288

gether with the transferred deltas. We will revisit reasoning about causality of deltas in the289

next section, where we use it for efficient dissemination of encrypted messages. Depending290

on the use case, causal consistency might not be required, thus enabling a more efficient291

anti-entropy algorithm. However, we recommend using causal consistency as a baseline for292

local-first software, because it is the least confusing form of weak-consistency for end-users293

(e.g., imagine you receive the answer to an email before seeing the original message).294

3 Encrypting CRDTs295

Our goal is to transparently protect user data in a setting where untrusted intermediaries are296

used to facilitate communication. There are two elements of our solution for this problem: (a)297

a cryptographic system that provides authenticated encryption and decryption capabilities,298

and (b) a scheme to efficiently replicate encrypted data. While these two are designed299
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34 type EnCRDT [S] = Set[AEAD[S]]
35

36 given [S]: Lattice [ EnCRDT [S]] with
37 def merge (left: EnCRDT [S], right : EnCRDT [S]): EnCRDT [S] =
38 left union right
39

40 extension [S] (c: EnCRDT [S])
41 def send(data: S, key: Secret , replicaID : ReplicaID ): EnCRDT [S] =
42 Set( encrypt (data , AssociatedData .empty , key))
43

44 def recombine (key: Secret )( using Lattice [S]): Option [S] =
45 c. flatMap ( decrypt (key)). reduceOption ( Lattice .merge[S])

Figure 5 Naive enCRDT that stores all states.

together, we will first present how the cryptographic system is used for efficient replication of300

encrypted data, assuming that it is safe for this use-case, and then present the cryptographic301

system itself in Section 4.302

We provide four transparently encrypting CRDTs (enCRDTs) that implement variants303

of our encryption scheme. Each of the four enCRDTs provides operators that constitute the304

interface of an anti-entropy algorithm – sending updated states and recombining received305

states into a full CRDT. They differ in how they prevent duplicated encrypted data from306

overloading intermediaries. An enCRDT stores serialized state, which we refer to as mes-307

sages, and the causality information that is required for pruning and efficient dissemination308

of messages (as we elaborate below). An enCRDT is used as a layer between a normal309

CRDT (that uses the enCRDTs to send and receive updates) and an existing anti-entropy310

algorithm (that treats the enCRDT as any other CRDT).311

With an enCRDTs in place, the intermediaries become replicas that run the usual anti-312

entropy algorithm – synchronizing the state of the enCRDT. However, they do not know the313

required secret to use operators for inspecting or modifying enCRDTs; they are untrusted314

replicas. For disambiguation, we call replicas that do know the secret trusted replicas. While315

messages of enCRDTs are confidential, i.e., only trusted replicas should be able to access316

them, causality information is not. Since only trusted replicas should be able to change both317

messages and causality information, the authenticity of both is required.318

In the following, we elaborate on the four variants of our encryption scheme.319

3.1 Naive Approach320

The trivial solution is an enCRDT that simply stores all messages (i.e., every serialized ver-321

sion of every state they receive). An implementation is shown in Figure 5. Line 34 defines322

the state of the naive enCRDT as a set of authenticated encryption with associated data323

(AEAD) values. AEAD allows intermediaries to merge their state based on the associated324

data (Line 38). However, the naive enCRDT scheme does not make use of this popssibility325

and simply unions the sets of AEAD values when merging two enCRDTs. The send operator326

(Line 38) inserts new messages into the enCRDT, ensuring they are encrypted and authen-327

ticated together with their associated data using a secret key. Intermediaries can forge new328

messages using incorrect keys, but this will be detected when a trusted replica decrypts the329

AEAD value. The recombine operator (Line 44) reconstructs the plaintext CRDT state by330

decrypting every message (filtering out those where decryption or authentication fails) and331

CVIT 2016
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merging them together according to the lattice of the plaintext CRDT.332

Assuming that AEAD protects data confidentiality and authenticity of the contained333

messages, even the naive enCRDT prevents the following potential attacks. Recombining is334

based on the underlying lattice, and thus the resulting plaintext state is independent of the335

order in which intermediaries forward the messages. Since merging is idempotent, replay336

attacks using duplicated messages also have no effect. The only way for intermediaries337

to interfere with the replication is to selectively stop disseminating messages to some or all338

replicas. In the case that replicas can only disseminate messages through intermediaries, this339

would give the intermediaries control over whether replicas can participate in the replication,340

i.e., send and receive updates. This is bad but not worse than the scenario where the341

intermediary did not exist.342

The naive approach shows that it is possible to reconcile privacy and integrity of data343

with coordination-free consistency in the presence of untrusted intermediaries. However, it344

is not an efficient solution, as intermediaries have to store the ciphertext of every state. We345

present solutions for this issue next.346

3.2 Pruning of Subsumed States347

Pruning addresses the common case where most replicas are connected and most changes348

are merged at every replica. Each state in a state-based CRDT contains the changes that349

causally happened before it, thus, in the best case, only the most recent message containing350

that fully merged state is necessary. Even in less optimal cases, intermediaries could discard351

all states that are subsumed by another state without loss of data.352

A state s is said to subsume another state s′, if s contains all updates of s′, that is353

s′ v s. Containing all updates is essentially equivalent to being the least upper bound in354

the join semilattice of states: s′ v s ⇐⇒ (s = s′ t s). Since intermediaries cannot obtain355

subsumption information from the ciphertext, they need to rely on logical timestamps [26]356

in the form of version vectors [12] attached to the messages as associated data. Intuitively357

only the latest states according to the logical times are kept as they subsume all earlier358

states. More formally only the states in K are kept with K := {s|∄s′ : s < s′}, since359

s < s′ =⇒ s v s′.360

Figure 6 shows the Scala implementation of the subsuming enCRDT. The state type of361

all enCRDTs is the same, but this one stores associated data in the AEAD. In particular, the362

version operator (Line 60) produces a version vector reflecting the combined latest version of363

the enCRDT. The version vector implementation is, practically speaking, a counter CRDT –364

reusing the implementation from Figure 2, but renamed to reflect its use. The latest version365

is computed by merging all associated versions in the enCRDT.366

Whenever one replica sends a new message it increments its counter in the associated367

version (Line 60). The causality information now states that the new message subsumes all368

prior states, thus Line 61 ensures that this is always the case. Finally, the merge function369

removes subsumed states by computing the set K described earlier (Line 52).370

All latest states must be stored by the intermediaries since they cannot merge cipher-371

text and each such state contains at least some unique information. However, any trusted372

replica can merge the encrypted messages and the result will subsume all other states in the373

intermediary, thus state on intermediaries is minimized as soon as they are connected to a374

trusted replica. The subsuming enCRDT state has a behavior similar to a multi-value regis-375

ter – another well-known CRDT type – and indeed our actual implementation of subsuming376

enCRDTs is based on a multi-value register.377
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46 type EnCRDT [S] = Set[AEAD[S]]
47

48 given [S]: Lattice [ EnCRDT [S]] with
49 def merge (left: EnCRDT [S], right : EnCRDT [S]): EnCRDT [S] =
50 val combined = left union right
51 combined . filterNot (
52 s => combined . exists (o => s. metadata < o. metadata ))
53

54 extension [S] (c: EnCRDT [S])
55 def version : Version = c.map(_. metadata )
56 . reduceOption ( Lattice .merge[ Version ])
57 . getOrElse ( Version .zero)
58

59 def send(data: S, key: Secret , replicaID : ReplicaID ): EnCRDT [S] =
60 val causality = c. version merge c. version .inc( replicaID )
61 Set( encrypt ( recombine (key) merge data , causality , key))
62

63 def recombine (key: Secret )( using Lattice [S]): Option [S] =
64 c. flatMap ( decrypt (key)). reduceOption ( Lattice .merge[S])

Figure 6 Subsuming enCRDT based on version data.

3.3 Delta enCRDTs378

Another approach to reduce the storage size of enCRDTs on intermediaries is to combine379

them with delta replication and only store deltas as encrypted messages. The implemen-380

tation for this delta enCRDTs is identical to the naive enCRDT. The difference is that381

trusted replicas do not send full states but just deltas. If causality must be ensured, mes-382

sages should include the full version as associated data to detect cases when intermediaries383

forward messages incorrectly. This is achieved by adapting the recombine operator to ignore384

any messages where no full causal chain to the initial version is available.385

For some CRDTs, such as an add-wins set where we assume that all insertions are unique,386

delta enCRDTs are optimal in the sense that no two encrypted states contain redundant387

information. Generally, delta enCRDTs are optimal for delta CRDTs, where the deltas388

never subsume any prior state. For the add-wins set, this is the case, because all prior389

additions to the set are still present when a new element is added. However, for other390

CRDTs, many operators create subsuming deltas. For example, every increment operator of391

the counter/version subsumes all prior deltas created by the same replica.392

3.4 Dotted Delta enCRDTs393

We can combine the subsuming enCRDT and delta enCRDT techniques to enable subsump-394

tion of delta messages. Consider again the case of subsuming enCRDTs. The associated395

data is a version vector that describes both the version of the message and the set of sub-396

sumed messages (all messages with a smaller version vectors). But for a delta its version397

and the set of subsumed versions are no longer identical. Thus, we split the metadata into398

the contained versions and the subsumed versions.399

A single version is referred to as a dot [37] – dots use the same implementation as a coun-400

ter/version lattice, but are interpreted to represent a different use and renamed accordingly.401

Version and subsumption information is contained in a dotted version vector [37, 2], which402
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is simply a set of dots, but with the implication that the implementation is optimized to403

store contiguous ranges of dots efficiently.404

The result is a dotted enCRDT, which stores – as associated data – two dotted version405

vectors, one for contained dots and one for subsumed dots. The implementation for dotted406

enCRDT is similar to subsuming enCRDTs, only the check for subsumption uses the subset407

test between the contained respectively subsumed dotted version vectors, instead of testing408

which version vector is smaller. As an additional note of clarification, subsumption informa-409

tion can be computed automatically using the merge function, thus there is no opportunity410

for developers to introduce causality errors.411

A potential disadvantage of the dotted enCRDT is that the system must compute and412

manage the dotted version vectors. However, the version metadata can also be used for413

more efficient implementations of CRDTs and to ensure causality for delta replication [3],414

thus amortizing the complexity cost. A remaining disadvantage is the amount of metadata415

available as plaintext to the intermediaries. We discuss this issue in Subsection 4.3.416

4 Coordination-free Secure Cryptography417

This section presents our cryptographic system that provides authenticated encryption418

and decryption capabilities via authenticated encryption with associated data (AEAD) [41].419

AEAD is a form of encryption that provides the confidentiality and authenticity required420

by Section 3. It relies on symmetric-key cryptography where only trusted parties (replicas)421

have access to a single shared key. AEAD works on a plaintext s and associated data c (we422

use s for state and c for causality information respectively). The Message Authentication423

Code (MAC) m ensures authenticity of (s, c), and symmetric encryption secures plaintext424

s. If the AEAD system is used correctly (a) only trusted parties (replicas) can decrypt425

messages, and (b) modified or forged encrypted messages – including associated data – are426

refused by all trusted parties (replicas).427

AEAD systems are well studied and widely used, e.g., in TLS 1.3 [40]. However, each428

use of a cryptographic construction in a new field requires to carefully select concrete im-429

plementations of cryptographic functions and ensuring that they are executed with suitable430

parameters. In particular, all commonly available cryptographic functions suitable to our431

use case require a certain amount of coordination to ensure correct use of parameters. A432

key challenge we solve is to systematically minimize the amount of the needed coordination.433

In the following, we first introduce our selection of AEAD implementations and their434

availability in common scenarios. We then discuss the best strategies to ensure correct435

use of parameters with a minimal amount of coordination. While there is no single best436

solution, we implement multiple choices with concrete insights on how many replicas are437

securely supported and how many operations they can execute without coordination. Lower438

bounds start at 92,000 replicas coordinating once every 130 years, ranging to any number of439

replicas without coordination for thousands of years. Finally, we discuss what information440

our system leaks in its metadata and potential ways to minimize this.441

4.1 Availability of Concrete AEAD Constructions442

Our supported AEAD constructions are AES-GCM, AES-GCM-SIV, and XChaCha20-Poly1305.443

Figure 7 shows the availability of the constructions in the Java Cryptography Architecture444
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Java Web libsodium Tink
AES-GCM • • • •

AES-GCM-SIV •
ChaCha20-Poly1305 • • •

XChaCha20-Poly1305 • •

Figure 7 Overview of supported AEAD modes in various environments.

(JCA)4, Web Cryptography API 5, libsodium6, and Tink7. All libraries support AES-GCM445

due to its use in the TLS specification [40]. The more modern AEAD construction ChaCha20-446

Poly1305 was introduced in TLS 1.3 [40] and is currently also supported by all libraries ex-447

cept Web Cryptography API. XChaCha20-Poly1305 [4] is an adaption of ChaCha20-Poly1305448

with a larger nonce-size and proven to be at least as secure [8]. While not yet standardized449

by IETF, it is supported by libsodium and Tink [4]. Another AEAD construction that is450

currently implemented only in Tink but might be adopted by many libraries in the future451

is AES-GCM-SIV [19]; it introduces a highly interesting new security characteristic, namely452

that its construction is resistant to parameter reuse, which simplifies coordination-free pa-453

rameter selection.454

4.2 Coordination-free Generation of Nonces for AEAD455

To encrypt and authenticate a message, all considered authenticated symmetric encryption456

schemes require three inputs. The message, the encryption key, and a nonce [42]. A nonce is457

a number that must only used once together with the same key. If a nonce is used multiple458

times with the same key, then encryption schemes leak information about the plaintext.459

For example, in AES, an attacker learns the bitwise exclusive-or of messages with the same460

nonce [29]. The AES-GCM construction even allows an attacker to forge authenticated461

messages when a nonce is reused [22]. Nonce misuse is not a theoretical problem, but one462

that leads to severe real-world attacks, e.g., on TLS [10] and WPA2 [50].463

The issue is that the decision on how to choose nonces is left to the developer, and,464

unfortunately, previous research on crypto misuses has shown that developers struggle with465

secure choices for crypto APIs [25, 34, 39]. This is not surprising, considering that libraries466

like the Web Cryptographic API do not even document that nonces should be unique.467

In our system, the uniqueness is ensured transparently. But ensuring uniqueness is468

a classical coordination problem. Next, we discuss how to select unique nonces without469

coordination, while staying within generally accepted levels of certainty for the provided470

confidentiality.471

4.2.1 Selecting Nonces by Space Partitioning472

A textbook approach to ensure that a nonce is only used once is to employ a strictly mono-473

tonic counter that provides a unique nonce for each message [14]. This is the case for AEAD474

algorithms in TLS 1.3, where the specification mandates the use of the TLS sequence num-475

ber to compute the nonce [40]. Using a single counter for all replicas is not possible with-476

4 https://docs.oracle.com/en/java/javase/16/security/
5 https://www.w3.org/TR/WebCryptoAPI/
6 https://libsodium.org/
7 https://developers.google.com/tink
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out coordination, since this is a prime example of mutual exclusion. An adaption of the477

counter approach is to partition the nonce space into multiple ranges, each exclusive to a478

single replica. The resulting counter consists of a constant replica-specific number and the479

incrementally increasing replica-specific counter. This strategy requires coordination only480

once, when the replica is initialized, and is generally a good choice for a set of devices pro-481

vided by a single instance (i.e., devices of a single user or company). In large groups of482

loosely cooperating devices, however, short unique replica-specific numbers are not gener-483

ally available deterministically and instead, cryptographically secure pseudorandom number484

generation (CSPRNG) can be used.485

Using replica IDs for partitioning. As seen with our counter-CRDT example (Fig-486

ure 2) many applications already require replica-specific IDs for their behavior. Typical487

examples for replica-IDs are randomly generated UUIDs, as seen in the automerge8 library,488

or a hash of a replica-specific public-key [23]. Therefore it seems intuitive to reuse the489

replica ID to partition the space of nonces. In the case that the chance of collisions of any490

two replica IDs is small enough to be negligible, this is a secure choice. However, to ensure491

uniqueness, the size of such identifiers is usually 128 bits [27], which is too large for use with492

popular AEAD constructions. The NIST specification for AES-GCM, e.g., recommends that493

implementations should restrict their support of nonce lengths in AES-GCM to 96 bits [14].494

Thus, at least for AES-GCM, direct use of such replica IDs is not possible.495

Using small random replica-specific numbers for partitioning. Instead of using496

the replica ID, we can generate short replica-specific numbers using a CSPRNG, but this497

leaves us with a probability of collisions of replica-specific numbers, thus a collision of nonces.498

According to the NIST specification, the probability that a nonce is reused for a given499

key must be less or equal to 2−32 [14]. Considering the birthday paradox [45], there is a500

surprisingly high probability that two replicas choose the same replica-specific number. For501

example, when choosing a 64-bit long replica-specific number, we can have 92,000 replicas502

before the collision probability reaches over 2−32 and thus the NIST specification is violated.503

Assuming 92,000 replicas are sufficient, and given the explicit 96-bit nonces of AES-504

GCM, a 64-bit replica-specific number leaves room for 32-bit replica-specific counters. This505

provides 232 ≈ 4.3 × 109 messages to each replica. Assuming that a replica would encrypt506

one message every second, the counter could be used for over 136 years, before requiring507

coordination to select a new shared secret. This is the best choice when only AES-GCM is508

available.509

4.2.2 Selecting Fully Random Nonces510

A fully coordination-free approach to nonce generation is to rely on a CSPRNG to generate511

a new random nonce for each message. Literature warns against random nonces in some512

cases [10]. For example, nonces in TLS (using AES-GCM) consist of 32-bit part specific to513

the sender and connection, and a 64-bit part to ensure uniqueness [43]. With 64 bit random514

nonces the collision probability after encrypting 228 ≈ 2.7 × 108 messages would be around515

0.2 % and for 232 ≈ 4.3 × 109 messages around 39 % [10].516

For using 96-bit random nonces with AES-GCM, the libsodium documentation recom-517

mends against it [28], while the documentation of Google’s cryptography library Tink recom-518

mends it for “most uses” [17]. Specifically, Tink guarantees that their AES-GCM construc-519

tion with random nonces can be used for encryption of at least 232 ≈ 4.3 × 109 messages,520

8 https://github.com/automerge/automerge
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while keeping the attack probability smaller than 2−32 [17].521

This, however, is a global message limit, i.e., counting all messages encrypted by all522

replicas using the same key. The only way to enforce this limit without coordination is523

to restrict the number of distinct messages to 232

n , where n is the maximum number of524

replicas that can use a single key. Thus, further limiting the number of encrypted messages.525

Assuming 1024 as an upper bound on the number of replicas, this leaves 232

1024 = 222 ≈526

4.2×106 messages to each replica. Or, in other words, 7 weeks of coordination-free operation527

using one message per second. Moreover, enforcing a limit on the number of replicas also528

requires coordination.529

However, random nonces become practical with very large nonces supported by XChaCha20-530

Poly1305 [4]. The use of 192-bit nonces allows 280( 1024) messages to be encrypted with a531

nonce collision probability of 2−32 [4]. To put this in context, if every possible of the 232
532

IPv4 devices is encrypting messages at the rate of one message per millisecond, this leaves533

us with over 8900 years before we must rotate keys. Therefore, XChaCha20-Poly1305 should534

be strongly preferred over AES-GCM, if it is (efficiently) available on the target platform.535

4.2.3 Nonce Misuse-resistant AEAD Schemes536

A newer development are full nonce misuse-resistant authenticated encryption schemes, such537

as AES-GCM-SIV [19]. In contrast to the previously discussed AEAD schemes, it is secure538

to reuse a nonce for the same key with a different message. Thus it is, in theory, a good539

candidate for use with shared, long-lived keys. However, as discussed in Figure 7, an imple-540

mentation of AES-GCM-SIV is not widely available, and the scheme has not been scrutinized541

as much as other presented approaches.542

4.3 Information Leaks543

If used correctly and securely, AEAD constructions provide confidentiality of the plaintext.544

This, however, does not necessarily mean that all sensitive information remains confidential.545

One scenario where this becomes quite clear is our counter example (Figure 2). The counter546

only supports one mutator: incrementing by one. Thus the state of the counter is equivalent547

to the version vector associated with the ciphertext. Recall that our example uses the548

same implementation for the counter and the version vector. There are also other types of549

information leaks to consider, like the size of states in transit and who disseminates states at550

what time, etc. However, these issues are not unique to our solution, and countermeasures551

exist [20, 49]. Moreover, because enCRDTs do not require a central entity, it becomes easier552

to apply countermeasures. An example countermeasure is to split messages over multiple553

intermediaries (such that no single intermediary may learn all metadata), or use randomized554

routing such as TOR [13]. Both are feasible because our solution is resistant to any form of555

delay and message reordering.556

5 Implementation and Evaluation557

We evaluate our proposal along the following research questions:558

RQ1: Is our approach suitable for designing common CRDTs and for developing appli-559

cations using them?560

RQ2: Is the performance overhead for encryption small enough for general use?561

RQ3: Is the space overhead of enCRDTs on intermediaries acceptable?562
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Figure 8 Encryption vs. serialization time for AWLWWMap states containing many entries.

5.1 RQ1: Suitability for Designing CRDTs and Applications563

While we believe that enCRDTs have the most value when adding them to an existing system,564

because existing implementations for CRDTs and for the anti-entropy layer can be reused,565

we implemented a self-contained prototype of our overall approach. The prototype contains566

implementations for common CRDTs [46] and delta state CRDTs [3], our four enCRDTs,567

and an anti-entropy implementation using WebSockets based on Eclipse Jetty9. It serves568

three purposes: as a reference for implementations in other systems, to test our approach569

to designing CRDTs, and to provide data about the cost of enCRDTs.570

The prototype makes heavy use of the CRDT composability introduced in our architec-571

ture. For example, the tombstone-free map is composed out of a tombstone-free add-wins572

set [9] and a last-writer-wins register. If the add-wins-last-writer-wins semantic does not573

fit a use case the inner last-writer-wins register can be substituted, e.g., with a multi-value574

register to keep multiple concurrent values in the map. The same applies to the add-wins575

set, which could be replaced with remove-wins, grow-only, or a two-phase set.576

We have found no limitations on implementing CRDTs using our approach and all of577

them can be securely disseminated using our enCRDTs. We also implement the popular578

to-do list example as a JavaFX GUI application which uses the add-wins-last-writer-wins579

map (AWLWWMap) for its primary state – the data structure we will use primarily for580

the evaluation of the overhead of enCRDTs. Our implementation is publicly available, link581

removed for double-blind review.582

5.2 RQ2: Time Overhead of enCRDTs583

For the benchmark, we use JMH10 the standard Java benchmarking tool executed on a 2015584

Intel Core i7-6700HQ Laptop CPU. The main overhead of using enCRDTs for a trusted585

replica is the cost of AEAD, which is in our case provided by Tink11, which uses hardware586

acceleration for AES-GCM and AES-GCM-SIV. To quantify the overhead and put it into587

perspective, we serialize and then encrypt a CRDT state. To serialize states, we use jsoniter-588

9 https://www.eclipse.org/jetty/
10 https://openjdk.java.net/projects/code-tools/jmh/
11 https://developers.google.com/tink
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Figure 9 The size difference of the state size for trusted and untrusted replicas between encrypted
state-based CRDTs (left) and encrypted delta-based CRDTS(right).

scala12 (the arguably fastest JSON serializer available on the JVM13).589

We compare the encryption overhead on top of the serialization cost (paid even without590

enCRDTs) between the different AEAD schemes, using the add-wins-last-writer-wins map591

with 100 and 1,000 entries as test cases. The results in Figure 8 reveal that the computation592

overhead of the different AEAD implementations is usually small in absolute terms. In593

the worst case of sending the full state of a set with 1,000 entries, the overhead is only594

a fraction of a millisecond due to hardware acceleration. XChaCha20-Poly1305 does not595

benefit from hardware acceleration yet still has an overhead of less than 3 ms in the worst596

case. XChaCha20-Poly1305 is an especially suitable choice on systems where hardware597

acceleration is also unavailable for AES, because is designed to be efficiently implemented598

in software [4].599

To answer our research question, the overhead of introducing enCRDTs is a fraction of600

a millisecond, as it can reuse common and efficient encryption schemes. Thus, we believe601

that enCRDTs are a suitable and secure solution for most use cases.602

5.3 RQ3: Space Overhead of enCRDTs603

The Intermediaries of enCRDTS cannot merge states due to the encryption and need to store604

all concurrent encrypted states. Thus the space requirements of enCRDTs on intermediaries605

is higher than of the wrapped CRDT. While the absolute size of an enCRDTs is dependent606

on the underlying CRDT, the AWLWWMap we present here shows the general trends of the607

enCRDTs independently of the wrapped CRDT. The naive enCRDT and dotted enCRDT608

are not considered, because the first has the same behavior as the shown worst case of the609

subsuming enCRDT, and the latter is somewhere in between the shown cases depending610

on the quality of the causality information. Encrypted sizes depend on the number of611

concurrent updates, that is, how many updates the intermediary received from different612

sources, without being connected to a trusted replica that merged the encrypted state. In613

general, concurrent updates are either quickly merged by active replicas, or no new updates614

are produced because there are no connected trusted replicas – in both cases, the number615

12 https://github.com/plokhotnyuk/jsoniter-scala
13 https://plokhotnyuk.github.io/jsoniter-scala/
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Figure 10 Cumulative size of all encrypted deltas in AWLWWMap compared to merged state.

of concurrent updates remains small.616

Figure 9 shows the space requirement of storing a AWLWWMap with 10,000 entries617

using a subsuming enCRDT (left) and a delta enCRDT (right) on a trusted replica versus618

intermediary when there are 1 to 4 concurrent updates. The state size of the trusted replica619

is the same in all cases (technically the size increases slightly as a new entry is stored,620

however, the effect of this is negligible), as it always merges all received updates. For the621

intermediary, however, we observe that the size of subsuming enCRDT (left subfigure) grows622

linearly with each concurrent update. We expected this result as each update contains the623

full state which must be stored. For the delta enCRDT (right subfigure), the state for a624

single concurrent update is larger than the state of the trusted replica because each delta625

is stored separately, which introduces a constant overhead per delta. However, each further626

concurrent update only marginally increases the state size because only the single additional627

delta is stored.628

Figure 10 quantifies the size difference of the AWLWWMap when stored as a merged629

state versus being stored as the set of its constituent deltas. We can see that the storage630

as deltas has a fixed relative overhead of 60 %. This is typical behavior for most CRDT631

state implementations because a delta is simply a singleton instance of the CRDT state,632

and there is a fixed overhead to represent this state. Thus each additional entry makes the633

set of deltas grow at a constant but faster rate than the merged state, which also grows at634

a constant rate.635

In general, storing only the deltas at intermediaries does not cause the state to increase636

due to concurrent updates but has a fixed cost associated. Which strategy is more suitable637

depends on how reliable the connection between trusted replicas and intermediaries is, and638

how many different intermediaries are part of the system. In summary, we believe that one639

of the presented enCRDTs is suitable for most use cases. If other behavior is required, new640

variants of enCRDTs with different subsumption strategies can be used.641

6 Related Work642

6.1 Conclict-Free Replicated Data Types643

Shapiro et al. [47] formalize CmRDTs (operation-based) and CvRDTs (state-based) as well644

as strong-eventual consistency as a solution to the problems of the CAP theorem. In the645

accompanying technical report [46] they additionally describe several concrete state-based646

and operation-based CRDTs. The foundation of the strong eventual consistency guarantees647
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of CRDTs is the CALM theorem [21]. While CAP [11] describes an impossibility of coor-648

dination freedom and consistency for arbitrary algorithms, the CALM theorem proposes a649

programming model restricted to monotonic operations where conflict-free consistency can650

be achieved. In the case of state-based CRDTs, this monotonicity comes from the “mono-651

tonically non-decreasing join semilattices” [47].652

CRDTs originate from technology surrounding highly-available databases, which has653

commonalities with “local-first software”, albeit the ostensible differences. Two popular gen-654

eral purpose CRDT implementations that are not part of databases are automerge14 and655

Yjs15 [35]. Both of them are JavaScript frameworks and work in ad-hoc peer-to-peer envi-656

ronments. They both rely on operation-based CRDT protocols. Automerge is loosely based657

on a paper by Kleppmann et al. [23] that describes a CRDT that replicates a JSON-like658

data model. This paper describes a formal semantics of concurrently editing arbitrary JSON-659

structures and showcases problems with concurrent modifications on replicated, nested struc-660

tures. Compared to both database approaches and the approaches above, our solution relies661

on an “open” approach to a CRDT-based architecture, where developers can add their own662

data types instead of being restricted to a pre-defined set of types.663

Almeida et al. [3] introduce the concept of delta state replicated delta types (delta-664

CRDTs). They claim that their delta-CRDTs can achieve small message sizes that are665

prevalent in operation-based CRDTs but not necessarily in state-based CRDTs. Contrary666

to operation-based CRDTs, delta-CRDTs rely on the constructs of state-based CRDTs, allow-667

ing the dissemination of updates over unreliable communication channels. They introduce668

two anti-entropy algorithms with one of them assuring causal consistency. In their paper669

they also introduce several concrete delta-CRDTs and a framework for causally consistent670

delta-CRDTs. The described framework was used in production as part of Riak DT16 and671

relies on composition of dot-stores that share a common causal-context. These dot-stores672

are closely related to dotted version vectors [37, 2]. Our enCRDT approach makes heavy673

use of the concepts from dot-stores, but we put a much higher focus on composability of674

merge functions, and make an exlicit split between public metadata for causality, and the675

private state of CRDTs.676

6.2 Security in CRDT systems677

Preguiça et al. [38] give a broad overview on the research and applications around CRDTs678

and also have remarks on future directions of research. One of these directions is the area679

around security in CRDT systems. They observe that while it is possible to restrict access680

to a CRDT based interface using authentication, the replicas themselves are vulnerable to681

harmful operations on any other replica. Furthermore they also describe a similar idea to682

what is discussed in this paper: end-to-end encryption of states stored on third parties. This683

end-to-end encryption would remove the need to trust the provider of the third party. They684

state that this would require pushing most of the computation to the edge (i.e., the client).685

Two alternatives that they suggest are homomorphic encryption and hardware-supported686

trusted execution (e.g., Intel SGX and ARM TrustZone).687

Barbosa et al. [5] introduce “privacy-preserving CRDT protocols”. They use a mixture of688

custom techniques and solutions from the space of homomorphic encryption to allow clients689

14 https://github.com/automerge/automerge
15 https://github.com/yjs/yjs
16 https://github.com/basho/riak_dt
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to interface with a distributed database (represented as a CRDT) without fully trusting690

the provider that hosts them. Specifically, they introduce an extension to AntidoteDB17,691

which is a “geo-replicated NoSQL database that leverages CRDTs”. They assume honest-692

but-curious adversaries, which means that the attacker (i.e., cloud service provider) is bound693

to service level agreements, and only interested in secretly extracting information. In their694

mode clients are not replicas themselves, thus require an intermediary to execute operations.695

The clients then use custom cryptographic methods to issue operations to the CRDTs hosted696

on the providers in a way that the provider may not read the data. This is presumably what697

Preguiça et al. [38] referred to with moving computations to the edge, as Preguiça is a698

co-author of both publications. Crucially, an adversarial provider could modify data and699

stop the client from executing any operations, because operations can not be authenticated.700

Moreover, all of their cryptographic constructions are specific to individual CRDTs.701

7 Conclusion702

Enabling users to continue working when they are offline and consistently synchronizing their703

data when they are online requires a coordination-free synchronization mechanism. While704

CRDTs address this issue, they were not designed with security in mind: Every replica is705

inherently trusted and no measures are taken to ensure data confidentiality and authenticity.706

We explained that this is especially problematic when untrusted intermediaries are used to707

cope with the realities of connectivity in the open internet.708

The foundation of our solution is an approach for systematic, modular, and extensible709

design of custom CRDTs. This approach facilitates the integration of CRDTs into existing710

programming models and existing network runtimes. Further, provides confidentiality and711

authenticity by design, i.e., transparently for the application developers. Specifically, we712

presented a family of four encrypting CRDTs (enCRDTs) for different network requirements.713

Each such enCRDT provides a secure layer between the data of a CRDT and the network714

runtime that disseminates the data over untrusted connections.715

Using our enCRDTs the application data is transparently encrypted while retaining co-716

ordination freedom. Our solution abstracts the complexity of encryption from the developer717

to avoid misuses of cryptographic primitives which occur very often in practice. Our eval-718

uation shows that we can implement any CRDT with our approach and any of them can719

be securely disseminated using our enCRDTs. The performance overhead is only a small720

fraction of the existing dissemination cost. The additional storage requirement is limited721

by the amount of concurrent changes in the worst case and can be minimized further for722

CRDTs with an efficient delta decomposition. Together, the results of the experiments show723

that it is feasible to use the proposed solution in practice.724

A remaining issue – common to all encrypted synchronization techniques – is that it725

needs to leak metadata to enable efficient dissemination of messages. However, because our726

approach is resilient to poor network conditions including reordering, delay, and duplication727

of messages, we believe that many common mitigation techniques can be applied without728

impeding normal operations. Such mitigations include sending fake data to make metadata729

less usable or routing data on multiple intermediaries such that no single one has a full view730

of the system. We may also be able to apply concepts from homomorphic encryption or731

secure enclaves to enable intermediaries to learn which states subsume each other, without732

gaining any further insight into the exact metadata of each message.733

17 https://www.antidotedb.eu/
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