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ABSTRACT
Directly visualizing the effect of changes to applications improves
developers productivity as they gain immediate insights on the
resulting application behavior. Yet, immediate feedback requires
a representation of the dataflow in the application to correctly
propagate and apply the effect of the changes.

Reactive programming is a programming paradigm which di-
rectly expresses applications dataflow in a declarative way. Recently,
researchers developed dedicated debugging techniques for reactive
programming that use the dataflow graph to enable inspections
and visualization.

In this paper, we adopt reactive debugging as a basis for live
modifications and tuning of reactive applications. To this end we
extend the debugger to allow live modifications to the dataflow
graph in a structured manner to change the application behavior.
We also suggest how developers of reactive applications can use
such extension to enable flexible tuning of applications at run time.
Our early experience shows that the combination of reactive pro-
gramming and live programming allows modifications and tuning
of applications while ensuring safety and consistency guarantees.
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1 INTRODUCTION
Reactive programming uses high-level abstractions to directly ex-
press the dataflow of reactive applications – those applications
which update their internal state based on external events and auto-
matically propagate state changes. Reactive programming improves
readability of complex dataflow and helps preventing bugs [21].
We base our work on reactive programming because it (a) enables
the development of interactive applications in a natural style, (b) is
well-suited for visualization, (c) is flexible enough to be adapted at
run time by non-experts, and (d) gives the runtime enough informa-
tion about the program to provide guarantees such as data safety,
i.e., data is not lost or processed by an intermediate inconsistent
version of the program when it is modified at run time.

Debuggers for reactive programming already allow inspection
of a reactive application through its dataflow graph during execu-
tion [20]. Based on reactive debugging, we pave the way towards
live programming. First, we extend an existing reactive debugger to
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allow run time modifications to the dataflow graph in a structured
manner. We provide some of the benefits of live programming to ap-
plication developers while ensuring that modifications always stay
within the confinements defined by the application code, i.e., guar-
antees given by the type system still hold, and data dependencies
in the application are kept consistent.

Second, we investigate how reactive applications may be in-
spected and modified not only by developers but also by users of
the application. Our goal is to enable developers to make their
applications tunable by domain experts using the application. To
this end, we propose patterns and idioms as well as new language
abstractions for specifying tuning points of the applications for
domain experts and, at the same time, still provide basic safety and
correctness guarantees of the application.

We assume three levels of expertise. First, the language and tool
authors who design very general abstractions and mechanisms to
implement arbitrary reactive applications. This first group, how-
ever, has no knowledge of the domain or requirements of the final
application which is written by the second group – the develop-
ers. Developers use the abstractions and tools of the language to
implement concrete application semantics. Developers determine
concrete use cases for their application. They are responsible for
ensuring that the application behaves as desired. We assume they
are familiar with the abstractions provided by the language and are
able to use them correctly. The third group, the domain experts of
the application, have concrete tasks they want to solve with the
application. Because tasks often vary slightly and those variations
are not always predictable by developers, domain experts also need
to vary the behavior of the application. However, because domain
experts do not have prior knowledge of application development,
it is more appropriate for them to change existing behavior in well-
defined ways, such that the application solves their tasks, without
the risk of breaking the application. We use the name tuning [15]
to refer to this process in the rest of the paper.

The main contributions of this paper are:

• We outline how the technique of reactive change propaga-
tion along the dataflow graph corresponds to and can be
used to apply changes at run time in a live environment.

• We extend an existing reactive debugger to allow live modi-
fications.

• We present early work towards tunable reactive applications.

In the rest of this paper, we first give a background on reac-
tive programming (Section 2) and the existing reactive debugger
(Section 3). We enable live updates to the running application and
explore new functionality for reactive debuggers to modify the state
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of the dataflow graph during the application run time (Section 4).
We then discuss how the modifications capabilities can be extended
by developers to provide tunable applications to domain experts
(Section 5). Finally we discuss other approaches and related work
(Section 6).

Live Demo. As our contributions are best demonstrated live,
in the workshop demo we will show the functionalities of our
extension of the Reactive Inspector debugger (Section 3). We plan
to demonstrate how the combination of reactive programming and
live programming enables principled live modifications of reactive
applications, as well as how such applications are tunable to achieve
the desired functionalities driven by live feedback.

2 REACTIVE PROGRAMMING
Today’s reactive programming is derived from functional reactive
programming (FRP). FRP has been first applied to functional mod-
eling of animations [13]. Early FRP systems compute individual
frames of an animation given timestamp t of the frame. FRP lan-
guages provide composable operators for the computation of frames.
In these systems, computation is synchronous and pull-based, i.e.,
when the frame at time t is requested, all operators are evaluated
at that time and the resulting values are pulled into one final result.

Reactive programming has been introduced into a number of
mainstream languages mostly targeting interactive applications
in the GUI domain [10, 16]. In the interactive setting, pull-based
evaluation of continuous time operators is found to be inefficient
because all input events have to be stored and reprocessed every
time a frame is requested. To solve this inefficiency, push-based
evaluation is introduced [12]. Input events are eagerly pushed into
the dataflow graph – the graph of connected operators. For each in-
put, operators recompute and cache their current value. Evaluation
semantics is still synchronous, i.e., all reactions (recomputations of
operators) to an input event happen at the same time. The system
produces the current state of each operator now, and no inspection
of the history is possible.

The inability to inspect the history makes the application harder
to understand because the current state depends on the order in
which external events occurred and can no longer be expressed
as a pure computation of time. We discuss how this problem is
addressed in reactive debugging in Section 3.

2.1 REScala
We use REScala [19] for our examples. REScala adopts the syn-
chronous, push-based propagation model, and supports two kinds
of reactive abstractions, events and signals for discrete or contin-
uous time-changing values, respectively. A signal always holds a
value, and represents state in the program, e.g., the current text
of an input field or the cached average of past sensor readings.
An event only has a value when the event fires, and it represents
actions that occur in the program, e.g., when a button is clicked
or a message is received. The example in Figure 1 demonstrates a
prototype application that visualizes sensor data in a dashboard.
Evt (Line 2) serves us as an input from an external temperature
sensor. The temperature event is processed by an operator pipeline
(Lines 5, 7) filtering extreme temperatures (probably sensor faults)
and aggregating the last 50 temperatures – a signal derived from

1 // input sensor for temperature

2 val temperature = Evt[Double]

3 // filter very high and low temperatures an outliers

4 val filtered =

5 temperature.filter(_ <= 100).filter(_ >= -40)

6 // build a history of up to 50 temperature values

7 val history: Signal[Seq[Double]] = filtered.last(50)

8 // an aggregation function that may change over time

9 val aggregation: Var[Seq[Double] => Double] =

Var(average)

10 // apply the aggregation function to the temperatures

11 val aggregated = Signal {

12 val f: Seq[Double] => Double = aggregation.value

13 f(history.value)

14 }

15 // select which values to display in the dashboard

16 val onDisplay: Var[List[Signal[Seq[Double]]]] =

Var(List(history, aggregated))

17 // assume a generic rendering function for values

18 def render = {

19 case d: Double => ...

20 case l: List[Double] => ...

21 }

22 // render selected signals on the dashboard

23 val dashboard = Signal {

24 for (item <- onDisplay.value)

25 yield render(item.value)

26 }

Figure 1: Dashboard application.

an event. Events and signals may be derived from other events
and/or signals as long as no cyclic dependencies are formed. The
aggregation function (Line 9) can change over time, i.e., we model it
as a signal, which holds the current aggregation function for every
point in time. More specifically, we model it using a Var, which is
an input “signal” that can be imperatively set. The signal expres-
sion (Line 11) applies the (time-changing) aggregation function to
the (time-changing) history of temperature events. Derived events
or signals are automatically updated whenever an input changes.
Inconsistent intermediate values based on a set of inputs which
are only partially updated yet are prevented – a property called
glitch freedom. The dashboard (Line 23) then renders all values
that should be on display (Line 16). Because the list of values on
display is a signal (a Var to be precise), the concrete displayed items
may change, resulting in a dynamic dataflow graph. The REScala
manual and the API documentation1 provide further details about
each REScala operator.

3 REACTIVE DEBUGGING
Debugging is the process of understanding the behavior of code to
resolve bugs. Debuggers aid programmers at finding defects and
help code comprehension by visualizing the application behavior

1www.rescala-lang.com/manual
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Figure 2: Reactive Inspector user interface.

during run time. Traditional debugging tools focus on the analysis
of control flow in sequential programs. They provide means to in-
terrupt the application at certain points (breakpoints) and continue
by stepping through each instruction of the program. However,
debugging based on control flow is unsuited for reactive program-
ming languages, because the control flow view does not correspond
to the dataflow of the reactive application. Therefore, developers
often use “printf debugging” to trace the dataflow or develop their
own ad-hoc visualizations of the dataflow graph [5].

Reactive debugging [20] is a debugging technique designed to
fit the needs of reactive programming. Reactive Inspector, a tool
that implements this technique, provides a set of features similar
to those of traditional debuggers but adapts to a dataflow view,
which is shown in Figure 2. Reactive Inspector directly visualizes
the dataflow graph and enables navigation through the history of
changes using history queries and a time slider. Reactive Inspector
can also pause execution of the current application when selected
nodes in the dataflow graph are modified, similar to breakpoints in
sequential debuggers.

Visualization. Figure 2 shows the Google Chrome debugger ex-
tension of Reactive Inspector. Reactive Inspector displays the dataflow
graph for the dashboard application code presented in Figure 1. The
main view of the debugger shows the dataflow graph. Nodes in
the dataflow graph are named after their corresponding variables
in the source code. Data flows from left to right, beginning with
the temperature event and ending at the dashboard signal. The
view shows the dataflow graph directly after it has been created,
so no temperatures have been recorded yet. The highlighted edge
(orange) represents the latest modification to the graph – the con-
nection between the aggregated value and the dashboard. When
the graph changes dynamically during program execution, i.e., new
nodes or new edges are added, those changes are reflected in the
dataflow visualization.

History. History navigation is similar to stepping through a se-
quential program, but does not pause the execution of the appli-
cation and works both forward and backwards. As described in
Section 2, reactive applications only store the current state – it is
normally impossible to inspect past states of the graph – hindering
understanding of the past behavior of the application leading to the
current state. Reactive Inspector solves this issue by storing every
past state of the dataflow graph and providing users with a way to
visualize the history of the graph. The history can be inspected by
moving the history navigator slider shown in Figure 2, and points
of special interest can be quickly found by issuing a history query.
History interactions are only visualizations, the application is nei-
ther modified nor paused – new events are recorded in the future
while inspecting the past.

Breakpoints. Similar to the breakpoints in traditional debugging
tools, Reactive Inspector allows users to attach breakpoints to cer-
tain graph nodes which cause the program to halt when the corre-
sponding node changes its value. Breakpoints may be conditional
and only trigger on specific values passing through nodes. A break-
point can also be set on the creation or deletion of nodes from the
dataflow graph. When a reactive breakpoint is triggered, Reactive
Inspector delegates to the native Chrome debugger to step through
the sequential code inside of signal expressions.

4 FROM INSPECTING TO MODIFYING
The reactive paradigm is particularly promising for live program-
ming because reactive applications are already designed to support
dynamic changes – which enables interactively experimenting with
different value in the graph. For example, the developer might won-
der what would happen if a very high (and thus filtered) tempera-
ture was measured when the history already contained 50 elements.
Would this temperature still trigger the update of the history and
remove one old element, even though it was filtered?

Yet, despite the dataflow graph is designed for processing dy-
namic and arbitrary input, and updating the application state, with

3



LIVE’18, November 2018, Boston, Massachusetts, United States Mogk, Weisenburger, Haas, Richter, Salvaneschi, Mezini

Figure 3: Reactive Inspector with extensions to modify the dataflow graph.

the current tools “what if” questions are surprisingly hard to an-
swer. Triggering an interesting (high temperature) event at the right
point in time (history contains 50 elements) requires modifications
to the application code to detect the desired event pattern and then
trigger the event. The dataflow graph in Reactive Inspector allows
one to answer such questions. We extend this tool to enable direct
manipulation of the values in the dataflow graph.

Graph Modifications. Figure 3 shows the extended interface of
Reactive Inspector. The interface allows changing arbitrary values
in the dataflow graph, similar to how interactive debuggers allow
changing values assigned to variables. However, changing arbi-
trary variables of an application may cause inconsistencies in the
data model. Reactive Inspector, on the other hand, uses the same
mechanism as if the application programmatically changed its in-
put events (Evt) or signals (Var). Thus, using the dataflow graph
prevents inconsistencies by ensuring that each change is fully pro-
cessed by the application. For example, when the developer issues
a new temperature event using the “Fire!” button in the left hand
pane of Figure 3, then the new event will be automatically added
to the history of events. The developer can then easily answer the
question above and conclude that the event did not change the
history – it was filtered.

Exposing the graph through the debugger in such a principled
manner allows developers to change the code without invalidating
basic assumptions of the application. For more flexible debugging
purposes, however, we also allow developers to modify arbitrary
signals and events, not just inputs (Var and Evt). For example, the
debugger allows one to directly set the average temperature value,
even if the new value is no longer reflects the current history of
temperature events. Similar to updates of input values, updates
to intermediate values are propagated along the dataflow graph,
e.g., the dashboard will be updated with the new average. How-
ever, forced updates result in visible inconsistencies, such as the
dashboard displaying a history with a wrong average. We allow
these forced updates as a tool for developers, which are expected
to understand the application well enough to prevent accidental
inconsistencies.

Time Travel. A well-known technique of debuggers to modify
the state of a reactive applications is time traveling [1], i.e., loading
a past state of the dataflow graph. REScala has efficient support for
snapshotting the dataflow graph [17] and the debugger can reinstate
an old state of the application by loading a snapshot. This approach
enables users not only to inspect the history of an application, but
also to have the actual application jump back and forth in time
to enable user interaction with the application in a specific state.
Time travel uses the history navigation to select the desired point
in time. Time travel is especially useful for “what if” scenarios. The
debugger is able to reset the application to a past state – allowing
the developer to explore what led to the current state – and modify
past values. Past modifications may change the current application
state in the future. It is the developer’s responsibility not to cause
inconsistencies when time traveling.

5 TOWARDS A LIVE TUNING FRAMEWORK
Inspection and modifications of the dataflow graph is not only
useful to developers, but also to enable customization – tuning – of
the application by domain experts. In this section, we envision a
live tuning framework built on top of Reactive Inspector.

Domain experts are assumed to have little or no knowledge of
application development, but need to comprehend and modify ex-
isting applications. For this use case, we consider correctness and
ease of tuning more important than the flexibility of a full-fledged
programming language. Domain experts should be able to under-
stand, learn from, and adapt examples, but without risk of breaking
the applications. The goal of our framework is to provide limited
tuning for most applications out of the box, without additional
developer effort. However, for flexible tuning of an applications the
framework provides features which developers have to explicitly
use. The goal is to enable expert developers to write maintainable
live applications (and libraries) at reasonable development effort.
Flexibility is achieved through dedicated language abstractions for
live tuning for modifying values, rewiring the dataflow graph, and
fully customizable developer-defined tuning mechanisms. We de-
scribe the spectrum of our abstractions supporting live tuning going
from the most simple (ease of use) to the most flexible.
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Tunable Values. The first step is to enable domain experts to
modify input signals (Var) and trigger input events (Evt). Interact-
ing with inputs is considered safe, as the dataflow graph never has
control over external inputs, and has to deal with arbitrary values
in any case. Reactive Inspector ensures that users may only enter
values of the correct type, and provides easy to use UI abstractions
for custom values, e.g., integer inputs are set via sliders, and string
inputs with a text box.

However, for some inputs such as the aggregation function of
Figure 1 Reactive Inspector is unable to enable easy modifications,
because the different aggregation schemes are arbitrary Scala func-
tions. To save domain experts from writing Scala code and to make
live modifications accessible, we allow developers to provide prede-
fined behaviors from which the domain experts select. The reactive
debugger then displays a drop-down list of possible choices. In
the example, the developer could provide an average and a sum
function, as an enumeration of aggregation schemes:

1 enum Aggregate(val name: String,

2 val compute: Seq[Double] => Double) {

3 case Average extends Aggregate("average", ...)

4 case Sum extends Aggregate("sum", ...)

5 }

The code snippet implements such choices for the aggregation
scheme by using an enumeration providing the the name and the
value (in the example, the aggregation function) for every option.

Rewiring Dataflow. A very powerful feature of the dataflow
graph is to rewire it at run time. For example, the application devel-
oper may want to allow the domain experts to adapt the contents
of a dashboard to add or remove displayed elements. The example
in Figure 1 already has basic support for such a use case but the
domain expert has to modify the list of signals that should be on dis-
play. There is a lack of visual collections between the list of signals
on display, and the visualized nodes in the dataflow graph. We plan
to extend Reactive Inspector to enable direct disconnection and
reconnection of edges in the dataflow graph, if a signal involving
higher order connections is detected. Connections are only possible
between signals with correct types, and the developer can limit
connections to a subset of all possible signals.

Developer-defined Tuning. At the end of the spectrum for appli-
cation tuning are solutions defined by the developer. For example,
developers may want to allow the domain experts to create new el-
ements in the dashboard. However, new elements should be limited
to a custom domain-specific language designed for data analysis, to
make it (a) simple for the domain experts to write and understand
such programs, and (b) limit the possible inputs and results to well-
defined sets to enforce application properties (i.e., data aggregations
should only return numeric results, not fire missiles).

The developer is free to specify how domain experts may interac-
tively tune the application. However, it is then also the developer’s
responsibility to map the such tuning mechanisms to the under-
lying dataflow graph modifications (e.g., changed nodes, changed
code within nodes, changed edges). The runtime will still take care
of ensuring propagation of updates and keeping the application
state consistent. We believe that using reactive programming and

the dataflow model provides a strong basis for a framework for
writing tunable applications, where the concrete run time behavior
is interactively developed, e.g., a data analysis application where
domain experts can interactively build and combine queries.

6 RELATEDWORK
Other debugging approaches more fitting to different high-level ap-
proaches have been proposed. In object-centric debugging [11, 18]
breakpoints are set on access or change of a specific objects fields,
not only on all instances of a certain class, similar to how Reactive
Inspector sets breakpoints on specific nodes in the dataflow graph.
Lazy evaluation also has the complication of non-sequential execu-
tion order like reactive code. Addressing non-sequential evaluation
also led to specialized debugging techniques such as oracle debug-
ging [9], where the user interacts with the debugger in a dialog
style using questions and answers. Another approach is to record
evaluations in a lazy program and then use a strict debugger to in-
spect the records [8, 14], similar to our use of the chrome debugger
for sequential code in the dataflow graph.

A common feature of advanced debugging is to the ability to
record the execution and inspect the log afterwards. Clematis [4] is
such a tool to record all input events (user actions, incoming server
messages, timeouts) and outputs (DOM changes, network request)
in a web application. Sahand [3] is an extension to Clematis and
additionally records all server inputs (incoming client messages,
etc.). These events are correlated and visualized as stories – a graph-
ical representation of the execution not unlike our dataflow graph.
However, these stories are sequential in nature and thus not as easy
to follow as the dataflow graph, and also do not lend themselves to
modifications. Barr et all [6, 7] record execution logs of imperative
applications. and use those logs to enable forward and backward
navigation in a visualizing debugger similar to our history naviga-
tion. By taking advantage of information in the garbage collector
about the running program, they reduce the amount of memory
needed to record. However, in contrast to the dataflow graph, the
state of the imperative application can not be changed after record-
ing, prohibiting modifications. Rxfiddle [5] allows one to visualize
the marble diagram and the dataflow of a reactive application. They
have not considered modifications.

There are some tools that add live modifcation to applications:
The Elm Debugger [1] allows one to go back in the past. They allow
modifications, but these have to be done on the source code. Kato
and Goto [15] have presented the idea of live tuning where users
are presented with a simplified interface – only the tuning sliders –
of a full fledged live programming IDE. We use this idea to provide
live tuning based on an extended debugger instead of a full IDE,
and use reactive programming to make the tuning robust and easy
to implement. ZenSheet [2] pushes spreadsheets towards general
purpose programming, whereas reactive programming can be de-
scribed as spreadsheet semantics for general purpose programming
languages. Our approach has the advantage that existing tools, li-
braries, and infrastructure can be reused, however at the cost of
less flexibility at runtime. We believe that both approaches provide
their own value, and it will be interesting to see how far they can
push the boundaries in the corresponding directions.
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7 CONCLUSION
Wehave shown that reactive programming facilitates writing of tun-
able live applications by using the existing dataflow graph structure
of reactive programs. The dataflow graph is a suitable abstraction
for both writing reactive source code and representing reactive
code visually to interactively inspect, change and evolve the behav-
ior of an application. The presented approach to modify values in
the graph is an initial step towards making the graph more tun-
able through live modifications. Augmenting reactive programming
with abstractions specific for tuning allows for safe run time modi-
fications also by non-expert developers. In perspective, we want
to support and to be able to mix both forms of “traditional” de-
velopment (compiling and re-executing) and “live” development
(changing code during run time), so developers can freely choose
to what degree they use which approach to solve specific problems
during the development process.
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