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The execution of an application written in a reactive language involves transfer of data and control flow

between imperative and reactive abstractions at well-defined points. In a multi-threaded environment, multiple

such interactions may execute concurrently, potentially causing data races and event ordering ambiguities.

Existing RP languages either disable multi-threading or handle it at the cost of reducing expressiveness or

weakening consistency. This paper proposes a model for thread-safe reactive programming (RP) that ensures

abort-free strict serializability under concurrency while sacrificing neither expressiveness nor consistency.

We also propose an architecture for integrating a corresponding scheduler into the RP language runtime, such

that thread-safety is provided łout-of-the-boxž to the applications.

We show the feasibility of our proposal by providing and evaluating a ready-to-use implementation

integrated into the REScala programming language. The scheduling algorithm is formally proven correct. A

thorough empirical evaluation shows that reactive applications build on top of it scale with multiple threads,

while the scheduler incurs acceptable performance overhead in a single-threaded configuration. The scalability

enabled by our scheduler is roughly on-par with that of hand-crafted application-specific locking and better

than the scalability enabled by a scheduler using an off-the-shelf software transactional memory library.
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1 INTRODUCTION

Reactive Programming (RP) [Bainomugisha et al. 2013] features two kinds of reactives: Events and
Signals. Events are composable streams that can emit values. Signals are composable self-updating
computations with łspreadsheet semanticsž. The RP runtime tracks all dataflow dependencies
between reactives to automatically propagate changes from inputs with glitch freedom consistency.
This relieves developers from manually maintaining control flow, which in event-driven software
is often obstructed by łcallback hellž [Meyerovich et al. 2009]. As a result, RP enables modular and
declarative applications with improved code quality and maintainability [Salvaneschi et al. 2014a].
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This paper addresses thread-safety for RP. In a multi-threaded environment, multiple of the fol-
lowing three interactions between the imperative and reactive abstractions can occur concurrently.
First, firing designated input Events, or reassigning Signal variables. Second, reading (łpullingž)
the value of Signals. Third, computations that define derived reactives executing side-effects to
łpushž changes into imperative code. Multiple of these interactions concurrently affecting common
reactives leads to data races and ambiguities in that different concurrent changes arrive at different
derived reactives in different orders. Thus, RP systems must have a clear stance in relation to
multi-threading, preferably without sacrificing performance, consistency, or expressiveness.
No state-of-the-art systems succeed in providing all of these criteria. Scala.React [Maier and

Odersky 2012] and Distributed REScala [Drechsler et al. 2014] ensure thread-safety by using a
global lock to prohibit parallelism. łContainers and Aggregates, Mutators and Isolatesž [Prokopec
et al. 2014] do not address consistency even for single-threaded change propagation, and address
thread-safety limited to the scope of individual Signals and Events. Scala.Rx [Haoyi 2016] and
QUARP [Proença and Baquero 2017] only provide eventual consistency, in that derived Signals
skip intermediate updates if concurrent changes interact. Moreover, both systems support only
Signals, but not Events, since such a semantics of randomly skipping some values is not usable for
Events. Elm [Czaplicki and Chong 2013] has support for parallelism in theory, but its use is limited
in practice because it compiles to JavaScript, which has a difficult relation with parallelism. More
importantly though, Elm does not support changing dependencies at run-time, thus restricting the
language expressiveness. For example, clients joining and leaving an application can no longer be
modelled using reactives. Our objective is a RP approach supports expressiveness and consistency
in a multi-threaded environment, with Events and Signals, reactive computations with dynamically
changing dependencies, and side-effects.
To achieve consistency, it is necessary to address combinations of multiple operations across

several reactives as transactions. However, the common practice of aborting and redoing transactions
is inapplicable due to side-effects in reactive computations. Schedulers for abort-free execution of
transactions are notoriously difficult to conceive though, because they must guarantee success and
correctness before allowing side-effects to be executed. The RP runtime possesses knowledge (e.g.,
tracked data dependencies) and control capabilities (e.g., control flow authority), and adheres to a
well-defined, restricted execution model (i.e., glitch-free change propagation). We overcome these
challenges by using unique opportunities of the RP model. We exploit these aspects in a scheduler
that enables very fine-grained and efficient parallelization while ensuring abort-free and strict
serializable execution of concurrent reactive updates.
In summary, our key contributions are as follows:

• We dissect the RP system into basic components, operations and processes, and analyze them
for interactions that occur when they execute in a multi-threaded environment. Based on this
analysis we define a model for thread-safe RP that ensures abort-free strict serializability for
concurrent executions without sacrificing expressiveness or consistency (ğ3).

• We introduce a scheduling algorithm, called MV-RP, that enables concurrency-agnostic pro-
gramming by implicitly executing every imperative interaction as one transaction, and give an
intuition of how it achieves our proposed correctness (ğ4). A formalization and correctness proof
for MV-RP are available in an extended technical report [Drechsler et al. 2018].

• We provide a ready-to-use implementation of MV-RP transparently integrated into the runtime
of REScala [Salvaneschi et al. 2014b].1 Our extensive performance evaluation (ğ5) shows that
reactive applications executed with MV-RP scale with multiple threads, while the scheduler
incurs acceptable performance overhead. The scalability enabled byMV-RP is roughly on par

1We chose REScala, because its API is designed to support different backend runtimes.
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with that of hand-crafted application-specific locking, and better while also providing stronger
guarantees than a scheduler using an off-the-shelf Software Transactional Memory library.

ğ2 introduces RP concepts from the user perspective, ğ6 positions our approach with respect to
related work, and ğ7 concludes the paper and discusses areas of future work.

2 REACTIVE PROGRAMMING IN RESCALA

We introduce (single-threaded) RP from the developer’s perspective by implementing an example
application in REScala. Our design is inspired by the dining philosophers [Hoare 1985], with
philosophers sharing forks around a table. We later introduce concurrency and discuss its effects
throughmultiple threads concurrently executing updates for different philosophers. For flexibility in
later examples and benchmarks, the table’s SIZE (number of philosophers and forks) is parametric.

2.1 The User Perspective

We introduce Events, Signals, conversions between them and their imperative interactions.

Signals. Philosophers are modelled as Vars of type Phil, initially in state Thinking.

1 cases Phil = { Thinking, Eating }

2 val phils = for (j <− 1 until SIZE) yield Var[Phil](Thinking)

A REScala Var is a kind of mutable variable. Like ordinary variables, the value of a Var can be
read (through now, e.g., phils(1).now reads the current value of the philosopher with index 1) and
overwritten (through set(...), e.g., phils(1).set(Eating)). Unlike ordinary variables, changes
of Vars are automatically propagated to self-updating derived Signals that use the Vars in their
definition. In the following, forks are also modelled as enumerations with two states. But, unlike
philosophers, they are implemented as derived Signals.

3 cases Fork = { Free, Taken(by: Int) }

4 val forks = for (idx <− 0 until SIZE)

5 yield Signal[Fork] {

6 val nIdx = (idx + 1) % SIZE

7 (phils(idx).depend, phils(nIdx).depend) match {

8 case (Thinking, Thinking) => Free

9 case (Eating, Thinking) => Taken(idx)

10 case (Thinking, Eating) => Taken(nIdx)

11 case (Eating, Eating) =>

12 throw new AssertionError() } }

The Signal keyword instantiates a de-
rived Signal (here of type Fork) given
a user-defined computation, akin to a
spreadsheet formula. The computation
can depend on (the .depend keyword2)
values of multiple other Vars and/or Sig-
nals, its dependencies. In our example
(Line 7), each fork’s value is derived from
the values of the philosopher with the
same index and the next circular index.
If both are Thinking (Line 8), the fork is
Free. If one philosopher is Eating (Lines 9 and 10), the fork is taken. Otherwise (Line 11), the fork
raises an error (can’t be used by two philosophers simultaneously).

Like Vars, derived Signals’ current values can be read imperatively (e.g., forks(0).now), but unlike
Vars, not set. Instead, after the value of any dependency changed, their values are updated automati-
cally through reevaluation, i.e., re-execution of their computation. E.g., upon phils(1).set(Eating),
both forks(0) and forks(1) will be reevaluated and change their values to Taken(1).

Each fork has static dependencies on the same two philosophers at all times. In general though,
Signals may have dynamic dependencies. Below, Sight (line 13) represents philosophers’ possible
perception of their forks ś respective sights Signals are instantiated in line 14. Each sight(i) first
depends on the philosopher’s left fork (Line 17) to distinguish three cases.

2In the REScala API, n.depend is abbreviated as n(); we use the explicit .depend notation here for naming consistency.
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13 cases Sight = { Ready, Done, Blocked(by: Int) }

14 val sights = for (idx <− 0 until SIZE)

15 yield Signal[Sight]{

16 val prevIdx = (idx − 1 + SIZE) % SIZE

17 forks(prevIdx).depend match {

18 case Free => forks(idx).depend match {

19 case Taken(neighbor) => Blocked(neighbor)

20 case Free => Ready }

21 case Taken(`idx`) =>

22 assert(forks(idx).depend == Taken(idx))

23 Done

24 case Taken(neighbor) => Blocked(neighbor) } }

(1) Left fork is Free. Then, sight also
depends on the right fork (Line 18). If
the latter is Taken (Line 19), sight is
Blocked with neighbor’s index; other-
wise (Line 20), sight is Ready. (2) Left
fork is Taken by the philosopher himself
(Lines 21 to 23). Then sight is Done (he
himself is eating). In this case, sight also
depends on the right fork (Line 22) to
assert that it is also taken by the philoso-
pher himself. (3) Left fork is Taken by a
neighbor (Line 24). Then sight shows
Blocked by that neighbor and does not depend on the right fork. The dependency of sight on the
right fork is dynamic; it is discovered or dropped when a reevaluation of sight switches out of
or into the last case. After the dependency was dropped, changes of the right fork’s value do not
trigger reevaluations of sight until the dependency is re-discovered again.
Dynamic dependencies enable important features. One example is the creation and removal of

new Signals at run-time, which must be newly (dis-)connected with their dependencies. Another
example are higher-order Signals, i.e., Signals whose value contains pointers to other (inner) Signals.

Events and Conversions. Unlike Signals, Events only occasionally emit a value (e.g., mouse clicks)
and thus cannot be read imperatively. Analogously to input Vars and derived Signals, there are
input Events (not shown), which can be fired imperatively through evt.fire(value), and derived
Events, which depend on other reactives and may emit values when reevaluated. Events and Signals
can also be converted to and derived from each other, as shown below.

25 val sightChngs: Seq[Event[Sight]] = for (i <− 0 until SIZE) yield sights(i).changed

26 val successes = for (i <− 0 until SIZE) yield sightChngs(i).filter(_ == Done)

27 val counts: Seq[Signal[Int]] = for (i <− 0 until SIZE) yield

28 successes(i).fold(0) { (acc, _) => acc + 1 }

The .changed derivation converts a Signal (sights(i)) into an Event that emits each new value
of the Signal. The .filter derivation forwards emitted values only if they match a predicate;
here, successes Events fire whenever the respective sightChngs emit Done. The .fold derivation
converts the successes back into Signals. Folding Signals accumulate all values emitted by an
Event, similar to folding over (infinite) lists. Here, each folding counts Signals start with an initial
value of 0, which is incremented whenever the respective successes Event fires, i.e., they count
the philosopher’s successful Eating iterations.

Interactions with the Environment. So far we have discussed input reactives that can be imper-
atively set (evt.fire(value), resp. var.set(value)) to start reactive updates, and that Signals’
values can be imperatively read (s.now) to łpullž updated values out of RP abstractions. As a third
and final interaction between imperative and reactive abstractions, Event and Signal computations
can contain side-effects to łpushž changes back into imperative reactions.

29 val totalCount = successCounts.reduce(_ + _)

30 val output = totalCount.map{v => println(... v ...)}

We reduce (a method of Scala’s collection library, not related to RP) all successCounts, adding
them together one by one into the totalCount Signal, which thus counts overall successful Eating

iterations. We then map the values of totalCount using the println function. s.map(f) is shorthand
for Signal{f(s.depend)}, and usually derives a new Signal by transforming values of s via function
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f (exists equally for Events). In this case though, println is a void method that always only returns
the Unit value, i.e., the resulting Signal’s value is useless. But, during reevaluations, it executes the
side-effect of printing the value (v) of totalCount to console.

2.2 RP Behind the Scenes

Dependency Graph. The runtime representation of a RP program is its directed acyclic dependency
graph (DG), built while the execution of a reactive program unrolls. Fig. 2 (a) shows parts of the
philosophers’ DG. Nodes represent reactives and arrows their dependency relations pointing in
the direction of the data flow. A phils Var is visualized as a triangle labelled with its index at the
bottom, two forks and one sights derived Signal are visualized as circles.

1 val idx = 1

2 while(System.in.available == 0) {

3 if (sights(idx).now == Ready)

4 phils(idx).set(Eating)

5 if (sights(idx).now == Done)

6 phils(idx).set(Thinking)

7 }

Fig. 1. Driving thread for philosopher 1

Change Propagation. While the RP system is quiescent
and all Signals’ values are up-to-date in terms of the in-
put values of their computations, we say the DG is in a
consistent resting state. Imperative changes (set(...) and
fire(...) calls) cause Events and Signals react and prop-
agate these changes derived reactives. E.g., consider a
thread that continuously tries to switch a philosopher be-
tween Thinking and Eating. Fig. 1 exemplifies such a loop
for phils(1). We visualize reevaluated nodes through
shading and changed values through bold font. E.g., in Fig. 2 (b) the phils(1) Var has been changed
to Eating. Change propagation moves outwards over connected edges from every changed node,
and every reached derived reactive will be reevaluated. We visualize change propagation through
bold edges. E.g., in Fig. 2 (c), above change has been propagated to forks(0) which thus reevaluated
to Taken(1). After all changes have been propagated and all reevaluations completed, we say the
DG has reached an updated consistent resting state. Each imperative input change therefore causes
a change propagation, which takes the DG from one consistent resting state to the next.

Fig. 2. Section of a philosophers dependency graph with change propagation and a glitch.

Glitch Freedom. RP systems provide a consistency guarantee called glitch freedom, i.e., the absence
of glitches. Glitch freedom means, that every reevaluation is executed such that all values it reads
correspond to the updated consistent resting state of the DG. Under glitch freedom, computations
can not observe a set of values that some of which have been updated by the in-progress change
propagation, but some will still be updated later. This ensures, that reevaluations can rely upon
the invariants that exist between reactives in the consistent resting states of the DG. Fig. 2 (d)
visualizes a glitch that breaks the invariant that a philosopher always holds either both or none of
his forks. The change of forks(0) has propagated to and triggered a reevaluation of sights(1).
Its computation then executes the case of forks(0) being Taken(1) by the philosopher himself
(Line 21 in ğ2.1) and the associated assertion (Line 22). This assertion fails: forks(1) is still Free, as
it has not yet been reevaluated after the change of phils(1). This example is synthetic, but equally
grave errors may occur in realistic applications with similar invariants, e.g., when combining a list
Signal with an index Signal whose value glitches outside the list’s bounds.
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To achieve glitch freedom, RP systems use propagation algorithms that order reevaluations so that
glitches do not occur. Most propagation algorithms compute the reevaluation order as a topological
order of the DG. The order in Fig. 2 is not glitch-free, because it is inconsistent with the DG topology.
In general, these orders need to be devised on-the-fly, since any pre-computed order may become
incorrect when the DG topology changes due to dynamic dependencies.

3 REACTIVE PROGRAM EXECUTIONS UNDER CONCURRENCY

We introduce concurrency into our philosophers running example by, in essence, spawning one
driver thread from Fig. 1 for each philosopher on one table. In general, when a RP system is embedded
into a multi-threaded environment, an arbitrary number of threads can concurrently read Signals,
change Vars, and/or fire input Events. Concurrent input changes trigger concurrent reevaluations of
derived reactives, which in turn result in concurrent reads of their parameters’ values and updates
to the derived reactives’ values. It is easy to see that concurrent read and write operations on the
same reactive may result in race conditions, where the read may execute either before or after the
write. But noticeably more complex issues arise as well. Multiple concurrently executing change
propagations may have more than one reactive in common, that they will reevaluate. If they reach
and reevaluate one of these in a different order than the other, it can become impossible for yet
other reactives to be reevaluated glitch-free. In this section, we contribute a systematic account of
the issues introduced to RP when adding concurrency.
To systematically study the subject matter, we first lay out the anatomy of a RP system ś

its components and the operations through which they interact to implement reactive change
propagation. Next, we use the anatomy to exemplify increasingly complex race and ordering
conditions between concurrent operations, and derive restrictions on their interleaving that are
necessary to achieve thread-safety. Finally, we conclude with a formal correctness definition for
the execution of the operations.

3.1 The Anatomy of a Reactive Programming System

Fig. 3. Operations between RP Components

The anatomy of a RP system is depicted in Fig. 3.
It consists of the following components. The
łimperative environmentž in the lower-left cor-
ner represents user-defined threads and regular
variables of the host programming language
(e.g., the loop in Fig. 1). The łevent/signal com-
putationsž in the top-left corner represent the
user-defined computations of derived reactives
(e.g., all code from ğ2.1). The DG of all reactives
and their dependency relations is depicted in
the top-right corner. Finally, the propagation
algorithm is shown in the lower-right corner.

The arrows in Fig. 3 visualize the operations
through which the components interact. We distinguish three categories of operations, which we
visualize through different kinds of arrows: (a) reading the values of DG nodes (solid blue arrows),
(b) propagating changes through the DG (dashed red arrows), and (c) performing dynamic changes
of DG edges (dotted green arrows). As we elaborate later in this section, these are the operations
whose interleaved executions we need to restrict to ensure thread-safety of RP executions. Hence,
in the following, we map all RP features to these operations and explain each of them in detail,
including the data they access and how this data is stored in the DG’s nodes.
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Operations for reading DG node values (solid blue arrows in Fig. 3) are now, after, before, depend.
The simplest one is s.now (s is a Signal), which reads and returns the current value of s. When
a derived reactive d reevaluates, its user computation, compd , may also read the value of other
reactives, e.g., n, which thereby become its parameters. Reading parameters happens through
n.before or n.after, instead of n.now, because n.now is ambiguous in this context. If n is also
affected by the change propagation that reevaluates d and no (transitive) dependency between d

and n exists, n may be reevaluated before or after d, i.e., n.now may return the value of n before or
after it is reevaluated. In most cases, compd reads the glitch-free value of its parameters through
n.after ś these calls may possibly suspend until n is glitch-free.
The simplest use of before is in a folding Signal f: To compute the updated value of f, compf

must first read the old value of f through f.before. Folding Signals thus implement self-loops on
individual DG nodes. Calling before on other Signals further down the DG topology generalizes
this pattern to łbackwards edgesž that close cycles across multiple DG nodes (cf. last keyword in
[Sawada and Watanabe 2016]). But, there are also use cases for before not related to DG cycles.
E.g., a submit Event in a chat GUI reevaluates the text input field to remove the sent text, but
simultaneously needs to emit a message Event to the server with the value of text from before it
was cleared. On Events e, only the e.after operation is available for reading their value. This is
because Events only have an emitted value after they were reevaluated, but not before (before)
and not outside of change propagation (now).
Most parameter reads inside any compd are n.depend. E.g., all reads in all compd in ğ2.1 are

n.depend, except for the folding counts(i).before self-call. This includes all internally executed
reads by any changed, filter, map, etc. derivations. The n.depend operation behaves identical
to n.after, but additionally registers d for reevaluation upon changes of n. The choice between
n.depend and n.after thus grants all compd fine-grained control over which d are dependencies
or just parameters, i.e., which values’ changes do or do not trigger the next reevaluation of n.

Fig. 4. Composition of reactive nodes.

Operations for implementing change propagation

through the DG (solid red arrows in Fig. 3) are
update, reev (short for reevaluate), and invoke.
Change propagation is always initiated by an im-
perative update(i1 -> v1, i2 -> v2, ...) call. Calls
var.set(v) or evt.fire(v) are shorthand for update(var

-> v) or update(evt -> v). update(...) calls do not
directly update the values of the given input nodes, but
are dispatched through the propagation algorithm. The
latter translates them into a series of reev calls on DG
nodes to propagate the input changes glitch-free through the entire application. The execution of
each reev involves the respective DG nodes’ values and variables, which are depicted as grey boxes
(values) and white boxes (variables) in Fig. 4, and behaves differently depending on the reactive.

Input nodes (depicted on the left of Fig. 4) consist of variables vi and outi and control code ctrli .
vi holds the emitted/stored value of i and outi its outgoing dependencies, i.e., the set of derived
nodes currently registered on i for reevaluations. Initially, for each input i in update(..., i ->

v, ...), the propagation algorithm passes the corresponding v to ctrli . For Events, ctrli always
stores v as the emitted value vi and always reports i as changed. For Signals, ctrli writes v to vi
only if it is different from the previous vi (this before self-call is visualized in Fig. 4 by the thin
dashed arrow from vi to ctrli ). Together with the whether or not i changed, ctrli returns outi to
the propagation algorithm. If i changed, the propagation algorithm must eventually reevaluate
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Fig. 5. A glitch from concurrent propagations interacting.

each reactive in outi , once it can guarantee glitch-freedom. If i did not change, reevaluations of
nodes in outi triggered by other changes no longer need to wait for i.
Derived nodes d (depicted on the right of Fig. 4) consist of the same building blocks as input

nodes, plus the user computation compd and variable incd that stores incoming dependencies ś the
set of nodes on which d is currently registered for reevaluation.3 Their control code ctrld for Events
and Signals is identical to input nodes (determine if changed, write vd and additionally return
outd ). However, the value v passed to ctrld is not taken from the update(...) call’s parameters,
but computed as the return value of (re-)executing compd . While compd executes, the set of nodes
n on which it calls n.depend is recorded. After compd returns, but before the returned v is passed
to ctrld , d updates its predecessor edges in DG to match that set. The edges to add or remove are
computed as the differences between incd and the newly recorded set of n.depend nodes. If compd
executed n.depend but n < incd , d executes n.discover(d). If n ∈ incd but compd did not execute
n.depend, d executes n.drop(d). Afterwards, the new set of n.depend nodes is written to incd . Only
then, the execution of reev is finally completed by passing the v returned by compd to ctrld .
Operations for dynamic changes of DG edges (dotted green arrows in Fig. 3) are n.discover(d)

and n.drop(d). They are executed between pairs of nodes inside the DG, and thus visualized as a
loop on the DG component. The operation n.discover(d) updates outn := outn ∪ {d} (edge n → d

is discovered), while n.drop(d) updates outn := outn \ {d} (edge n → d is dropped).

3.2 Race Conditions between RP Operations

We first discuss race conditions between operations on the same reactive (i.e., same DG node).
Consider two threads, each executing an Eating update on a philosopher, from the applications
initial state (i.e., all counts are 0). Assume they race such that each increases the value of one
of the two dependencies of the totalCount Signal to 1, and then both simultaneously reevaluate
totalCount. Both reevaluations read both updated inputs, and thus both compute the latest value
for totalCount as 2. Both simultaneously read the previous value of totalCount as 0, and thus both
update it to 2 and both report totalCount to have changed. In response, both reevaluate output,
and thus the application outputs 2 as the new total Eating count twice ś a result that would not be
possible under single-threaded execution.

This problem occurred because of a race condition between both threads doing a compare-then-
update onvtotalCount . To prevent this, such compare-then-update operations on node’s values must
execute mutually exclusively. Note that, e.g., folding Signals generalize this problem, in that they
read the node’s own value (before self-call) already at the very beginning of their reevaluations.
Thus, reevaluations as a whole must execute mutually exclusive on each node. With mutually
exclusive reevaluations, the second thread’s reevaluation of totalCount would always read the
previous value as 2, thus determine the node as unchanged, and thus the new value 2 would
correctly be printed only once instead of twice.

Mutually exclusive reevaluations would only resolve half of the problem at hand, though. When
executing single-threaded, the application would always first output a new totalCount of 1, and

3The sets incd and outn mirror each other in that every edge n → d corresponds to d ∈ outn and n ∈ incd .
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not jump straight to 2. But, in the concurrent example this is skipped, because the first thread’s
reevaluation already encompassed both threads’ changes instead of just its own. Some may consider
this issue harmless in this particular instance, but taking into account its more general implications
shows that it is not. If totalCount were an Event instead of a Signal, this same issue would result
in the Event spuriously skipping some values, which is not tolerable. Moreover, in more complex
situations even with just Signals, other thread’s changes may be observed only partially, which
then causes a glitch even if all threads by themselves follow a glitch-free reevaluation order.
Fig. 5 demonstrates this, showing that also race conditions between operations across on multiple
reactives must be considered to ensure safe semantics.

The graph section shown in Fig. 5 is the same as in Fig. 2, but with phils(2) included additionally.
In (a), thread T2 executes phils(2).set(Eating) and reevaluates forks(1) to Taken(2) (nodes
shaded light grey). In (b), thread T1 reads sights(1) as Ready, changes phils(1) to Eating, and
reevaluates forks(0) to Taken(1) (nodes shaded dark grey). T1 has not yet reevaluated forks(1),
hence sights(1) is not ready for a glitch-free reevaluation. In (c), T2 propagates its change of
forks(1) to sights(1). From the local perspective of T2, both predecessors of sights(1) are now
glitch-free: forks(0) is not affected by the propagation of T2, and the reevaluation of forks(1) is
already completed. Thus, unaware of the (partial) changes by T1, T2 deems sights(1) ready for a
glitch-free reevaluation. But this is incorrect, because the changes by T1 are incomplete, and the
reevaluation produces the same glitch we demonstrated in Fig. 2 (sights(1) fails its assertion).
Besides reevaluations executing mutually exclusive on each reactive, each reevaluation thus must
also be isolated against reevaluations of all other reactives which it reads or depends upon.

Fig. 6. A deadlock.

Unlike for reevaluations on individual nodes, ad-hoc mutual exclu-
sion is insufficient to synchronize reevaluations across multiple nodes,
because deadlocks may occur. Fig. 6 demonstrates this on a table of only
(for simplicity) two philosophers and forks. The two associated threads
simultaneously set(Eating) (nodes are shaded light, respectively dark,
grey), and propagate this to their respective left fork. Each fork should
reevaluate, but each already has one dependency reevaluated by one
thread, but the other by the other thread. Thus it is already too late to
establish any kind of mutual exclusion ś the application is deadlocked.
It is common practice in, e.g., databases, to resolve such deadlocks by aborting one of the

involved parties, undo its changes, and restart it. Since we want to support side-effects in reactive
user computations though, which we cannot undo, this solution is inapplicable here. Instead,
synchronization between reevaluations of different nodes by different threads must be established
preemptively, before any are executed, to ensure that deadlocks do not occur in the first place.

3.3 Correctness Property for Thread-safe Concurrent RP

ğ3.2 showed that concurrently executing the operations between RP components can result in
harmful race conditions, and that preventing them requires complex synchronization to restrict
their interleaving. To devise and verify corresponding scheduling algorithms, we need a correctness
property for the execution of concurrent change propagations, which we derive next.
The most intuitive of these properties is linearizability [Herlihy and Wing 1990], where each

operation takes effect atomically at some linearization point during its execution. From the per-
spective of the imperative environment, linearizability is desirable: all n.now and update(...) calls
should behave and appear as if they executed atomically.

But, linearizability addresses only individual operations on singular data structures. It is therefore
not applicable from the perspective inside the RP runtime or when taking into account user compu-
tations on reactives. Each node in the DG is a separate data structure and external update(...) calls
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involve several compd , which execute several s.before, n.after and n.depend calls. To achieve a
single linearization point for an update(...) call, all its reads and writes across all nodes must be
orchestrated in some way to appear to take effect atomically together.
Transaction processing [Bernstein et al. 1986] provides a suitable model. Any number of reads

and writes, which should appear as one atomic unit of work, are grouped into one transaction.
Applied in the RP setting, every s.now call thus is a transaction containing a single read, and every
update(...) call is a transaction that contains all the reads and writes of all reevaluations executed
by the corresponding change propagation. Transaction processing provides a well-established
formal tool set, to describe and verify the correctness of transaction systems. During execution, a
transaction system produces a history ś a sequence of all operations of every transaction in the
order of their execution. Different levels of correctness of transaction systems are defined in terms
of permutations of these histories that a system can produce.
Serial histories are those where all transactions execute without interleaving of operations.

Systems that produce only serial histories are trivially correct, but very restrictive since they do not
allow any parallelism. A less restrictive property is built on view-equivalence defined over reads-from
relations of the form łtransaction A reads the value of variable x that was written by transaction
Bž. Two histories from the same set of transactions are view-equivalent if they are permutations
of each other, but still have identical reads-from relations. Hence, view-equivalence implies that
all reads of all transactions return the same value, i.e., transactions cannot distinguish between
view-equivalent histories. Therefore, any histories that are view-equivalent to serial histories are
equally acceptable as correct; such histories are called serializable histories.
Yet, serializability alone is not enough. A s.now transaction Tnow could read a value of Signal

s that was written by Tpast half an hour earlier, and was already overwritten shortly after by
another Tpast ′ . This would conform with serializability, as Tnow can formally be ordered between
the Tpast and Tpast ′ . Yet, this would confuse users, as one would naturally expect such a read to
return a current, up-to-date value of s. The foundation for a correctness definition for RP is thus the
combination of serializability and linearizability, known as strict serializability: Transactions must
execute their operations in a serializable fashion, and at the same time must have a linearization
point within the actual real-time window of their execution.

To increase flexibility without loss of correctness guarantees, we make the following adaptations
to strict serializability, based on various properties of RP.

(1) Usually, schedulers consider transactions of reads and writes on individual variables. The
discussion in ğ3.1 revealed, that all variables ever accessed by the RP system are stored inside
DG nodes. Moreover, all operations presented there (now, reev, before, after, depend, drop

and discover) affect variables of single nodes only, and hence are easily executed linearizable
per node, e.g., through simple mutual exclusion using Java’s synchronized scope on the node
instance. Thus, we design schedulers in terms of these more complex operations. This allows
us to address scheduling solutions at a higher level of abstraction.

(2) We require strict serializability only for user-visible operations, i.e., those whose arrows in
Fig. 3 have one end on the left-hand side. Other operations (e.g., drop or discover) may be
executed arbitrarily, as long as they add up such that all user-visible operations are executed
correctly. This gives schedulers more freedom to act in order to provide their guarantees,
without changing users’ experience.

(3) While a given propagation algorithm may be able to produce only a subset of all correct
reevaluation orders, other reevaluation orders still remain correct. We thus accept any glitch-
free order of reevaluations as correct, even if an underlying propagation algorithm is unable
produce this order in a single-threaded setting. This makes it possible to devise and verify
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the correctness of scheduling algorithms independently of concrete propagation algorithms.
Further, it also gives more freedom to schedulers by allowing them to disregard and overrule
propagation algorithms’ reevaluation orders, as long as they still preserve glitch freedom.

(4) Lastly, recall that transactions of RP updates may contain side-effects, and thus cannot be
aborted to resolve deadlocks. Because such aborts have become a common, widely accepted,
and often even expected practice in many domains (e.g., databases, STM), we consider it
necessary to explicitly state abort-free as an additional criterion for correctness.

Correctness property: Summarizing, we therefore define correctness for the execution of concurrent RP

transaction as abort-free strict serializability for user-visible operations (now, update, reev, after,
before, depend) with reevaluations of every update being executing in any glitch-free order.

4 MV-RP: A SCHEDULER FOR THREAD-SAFE REACTIVE PROGRAMMING

We extend the RP system in Fig. 3 with a scheduler that controls the execution of the operations
from 3.1 to achieve the correctness property stated in 3.3. In this section, we describe the scheduler
and intuitively indicate, how it produces abort-free strict serializable histories. We also show how
we integrate the scheduler into the RP anatomy such that it is transparent to the application.

4.1 RP Architecture with an Integrated Scheduler

As already noted, to ensure thread-safe executions of reactive programs in multi-threaded environ-
ments, it suffices to protect accesses to the DG. The scheduler can achieve this result by intercepting
all operations that act on the DG, including n.discover(d) and n.drop(d) which nodes inside the
DG invoke on each other. Additionally, the scheduler also intercepts all update(...) calls by the
imperative environment before they reach the propagation algorithm. While update(...) calls
do not directly access any data stored in the DG, intercepting them allows the scheduler to (a)
automatically wrap all operations triggered by each update(...) into one transaction, and (b) to
proactively prepare for these operations, rather than merely being able to react once they happen,
which is essential to support abort-free execution.

Fig. 7. Layered view of Fig. 3 with added scheduler.

Fig. 7 shows a rearranged view of the com-
ponents in Fig. 3 with the DG at the bottom
and the scheduler added between it and the
other components. All operations involving the
DG are diverted through the scheduler. As a re-
sult, the scheduler can overrule decisions of the
propagation algorithm regarding reevaluations
(reev) when necessary to achieve correctness,
as long as it retains glitch freedom.
The scheduler necessarily introduces addi-

tional operations on DG nodes (e.g., acquir-
ing/releasing locks), which are invisible to the
user code, hence irrelevant for correctness. In
addition, by implementing the scheduler and
propagation algorithm as a single integrated
system, it is equally feasible to also introduce
new operations between these two components. This allows them to cooperate instead of having
the scheduler independently overruling the propagation algorithm’s decisions. Specifically, our
scheduler comes with a dedicated interface that propagation algorithms must implement to queue
additional reactives for reevaluation with subsequent propagation, or to drop already queued ones.
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4.2 The Scheduling Algorithm

Main building blocks. Our scheduler intertwines three synchronization techniques:

• C2PL. Conservative two-phase locking (C2PL) [Bernstein et al. 1986] provides abort-free strict
serializability, but only if transactions can declare required resources prior to execution. Change
propagation transactions (triggered by update(...) calls) can traverse the DG from all inputs
that are about to change to reach all nodes that will be potentially reevaluated. Hence, C2PL can
be used during update(...) calls to protect the execution of reevaluations (dashed red arrows in
Fig. 3/7). However, C2PL alone is not enough to ensure abort-free strict serializability of update
transactions due to reads and dynamic edge changes, as we elaborate next.

• MVCC.Unlike reevaluations, read operations (solid blue arrows in Fig. 3/7) target arbitrary nodes.
The scheduler cannot predict these nodes ahead of time and thus cannot guard reads of their
values through C2PL. Instead, we employ multiversion concurrency control (MVCC) [Bernstein
et al. 1986], which gives the scheduler its name,MV-RP (Multi-Version-RP). MVCC maintains
a backlog of past values for each variable (called versions), which in our combination are each
written under control of C2PL. Because reads are idempotent, MVCC can execute reads łin
the pastž by returning old values from the backlog if necessary (while reads łin the futurež are
blocked until C2PL releases the corresponding version). This way, MVCC provides abort-free
serializable execution, and with some additional care also strict, for pure read operations. Since
writes are not idempotent, they cannot be executed in the past, meaning the combination of C2PL
for reevaluations and MVCC for reads is indispensable for providing abort-free strict serializable
execution for both kinds of operations.

• Retrofitting. Finally, dynamic dependency edge changes (dotted green arrows in Fig. 3/7) remain
to be guarded. Dynamic dependency changes write the addition/removal of the discovered/-
dropped DG edge on the edge’s source node. They thus have an effect and are not idempotent,
and therefore can not be executed łin the pastž through MVCC. Like reads though, the scheduler
cannot predict the source nodes of edge changes ahead of time, and therefore C2PL is inapplicable,
too. Instead, we control their execution through retrofitting, a custom technique that provides
abort-free strict serializable execution of dynamic edge changes by enabling their execution łin
the pastž despite their writes having an effect. Retrofitting is tightly intertwined with change
propagation, MVCC, and C2PL. It becomes active when a mismatch occurs between when a
dynamic edge change is executed in real time versus formal (serializability) time. Retrofitting
exploits a synergy between RP’s glitch freedom property and properties of the combination of
MVCC and C2PL above. It executes ill-timed writes by łrewriting the historyž of other nodes of
the DG, re- or un-doing effects as necessary to achieve correct execution and maintain all of the
guarantees provided by MVCC and C2PL.

The three techniques operate on a common data structure, called node version history. Each DG
node has its own history, which associates a node version with each transaction that affected the
node in some way. Each node version stores values for several variables of the node (cf. white
components in Fig. 4). Version histories are sorted by a serialization order of transactions. The
scheduler incrementally tracks this order as the directed acyclic stored serialization graph at run-
time (serialization graph testing [Bernstein et al. 1986]). It is a partial order globally, but a total order
over all versions within each node’s history. Creating a version on a node requires the transaction to
ensure that it is ordered against the transactions of all other versions that already exist on this node.
To avoid creating cycles in the serialization order due to race conditions, the stored serialization
graph provides an atomic (i.e., linearizable) łinsert edge between two transaction nodes unless a
path already existsž operation.
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Fig. 8. MV-RP philosopher execution example.

We elaborate on the scheduling algorithm, show-
ing example updates on a section of the philosopher
DG in Fig. 8. The figure shows several consecutive
scheduling steps (aśe). The section of the depen-
dency graph is shown in the middle part of each step.
It consists of philosopher 1’s input Var phils(1) (p1),
his neighbor Vars (p0 and p2), both his forks (f0 and
f1), his sights(1) (s1) and totalCount (c). Since s1
is currently Blocked(0), it does not have a depen-
dency on f1. Still, both s1 and f1 have paths to c ,
which are indicated across a squiggly lines cut-out
that represents the omitted intermediate nodes on
these paths. The version history of each node is vi-
sualized as a rectangle attached to the node via a
dashed line. Each line of text in these rectangles dis-
plays one node version. The lines starting with label
0 represent the initial state for this example ś both
p0 and p2 are Eating, p1 is Thinking. Other lines are
labelled by the index of the transaction that placed
the respective version. We denote transaction x as
tx , including the initial state as t0. We do not visual-
ize the transaction order of the stored serialization
graph. Instead we crafted the example such that once
transactions are ordered, their order matches their
indices (i.e., t1 before t2 etc.).

Framing Phase. Before executing, all transactions
perform C2PL during the framing phase. Fig. 8 (a)
demonstrates C2PL in themultiversion environment.
This step represents a state of the application, where
two threads concurrently admitted changes ofp0 and
p2 to Thinking. The corresponding propagations are
executed as transactions t1 and t2. In the framing
phase, every transaction (e.g., t1) traverses the DG
from all changed inputs (e.g., p0) to acquire place-
holder versions on every node.

Placeholders represent planned reevaluations and
a queue for the respective node’s exclusive lock.
Only the transaction with the first placeholder is
allowed to reevaluate a given node. Fig. 8 visualizes
placeholder versions as long underlines without any
text; newly created versions in each step are high-
lighted with a grey background. In step (a), t2 has
created placeholders on p2 and f1, but not yet on c ,
and thus is still in the process of creatingmore. t1 has
created placeholders on all nodes from p0 through
c and thus has fulfilled the first of two conditions
to switch from framing to executing. The second
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condition requires t1 to wait until all its predecessors (in the stored serialization graph) have
also already switched to executing. This is necessary to prevent that executing transactions have
predecessors that are still framing and thus may have not allocated all their potential reevaluations
yet. Otherwise, an executing transaction could miss a predecessor’s (planned) write when reading
from a node, thereby making it illegal for the predecessor to execute that write later on and thus
forcing an abort. Since t1 doesn’t have any predecessors in our example, this second condition is
met too, and thus it can switch to executing.

Propagation with Pipelined Parallelism. Once a transaction switched from framing to executing,
it transfers control to the propagation algorithm to issue reevaluations. An issued reevaluation is
executed as soon as the transaction has exclusive access to the node, i.e., when its placeholder is
the first placeholder on the node. When the reevaluation completes, that placeholder is cleared, i.e.,
replaced by a regular version that stores the node’s new value. The transaction thereby implicitly
relinquishes exclusive access to that node, which then becomes available for reevaluations by
following transactions. This eager unlocking enables pipeline parallelism, where concurrent updates
can make progress simultaneously even in mutually affected regions of the DG.
Consider Fig. 8 (b) for illustration. Again, new or changed versions since the previous step are

highlighted with a grey background. t2 has finished framing, which created a placeholder on c ś
this also established the order that t1 precedes t2. Despite their overlapping in the DG, both were
allowed to start propagating their changes: t1 has reevaluated p0 and f0, t2 has reevaluated p2 and
f1. Concurrently, transaction t3 was created by a change of p1 to Eating and has started framing. It
has reached c over f1 to create placeholders, but has not created a placeholder on f0, yet.
Fig. 8 (c) shows how MVCC enables abort-free execution of reads and motivates the need for

retrofitting. It depicts the application’s state during reevaluation of s1 by t1; the placeholder is
highlighted with a striped grey background. Because t1 updated f0 to Free, the user computation
of s1 now re-establishes its dependency on f1 (grey dependency edge), which first reads its value.
The latest value of f1 is Free written by t2. But, as t1 precedes t2, it is not supposed to see this value
ś the real time order in which t2 wrote Free and t1 reads f1 does not match the serialization order.
Without MVCC, the scheduler could not execute this read and would have to abort t1. With MVCC,
the scheduler can avoid the abort by returning a valid older value (Taken(2) from the initial state).

Note that there may be multiple older values that can be returned while upholding serializability.
This happens if the reading transaction is not ordered against all existing versions’ transactions,
yet. In this case, a choice must be made how to establish the missing ordering relations, subject to
two restrictions. (a) The read must be ordered before any framing transaction’s placeholders, to
maintain that executing transactions never have framing predecessors (cf. end of framing phase). (b)
The read must be ordered after any already completed transactions, to ensure strict serializability.
To follow real time order as closely as possible, MV-RP resolves such ambiguities by ordering
transactions as late as possible under the restrictions of (a) and any already established relations,
which automatically fulfils (b).

After the user-defined computation completes, s1 must update its incoming dependency edges
accordingly, i.e., it must add the grey edge to the outgoing dependencies of f1. This write, however,
suffers the same mismatch between real time and serialization order as the read did. This mismatch
is visually apparent by the discover(s1) version (a third kind of version besides placeholders and
written values, dedicated to dynamic edge changes) having been inserted in the middle of the
history of s1 (serialization order), instead of at the end (real-time order). Because t1 precedes t2 and
t3, the latter two must see this write. But, both have already read the outgoing dependencies of f1
when the write by t1 did not exist yet, and have therefore continued their execution based on the
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value from the initial state. Thus, the scheduler can no longer execute the write by t1 and would
normally have to abort t1. This is where retrofitting comes into play.

Retrofitting. To remain abort-free, the scheduler does allow t1 to write the edge insertion, which
temporarily invalidates serializability. To restore serializability, retrofitting then rewrites all version
histories as necessary to reconstruct a state, where t2 and t3 read the outgoing dependencies of f1
only after t1 added the edge f1 → s1. Fig. 8 (d) shows the changes made by retrofitting (lines with
grey background). Retrofitting computes the required corrections from the version history of the
source node of the added edge (here, f1).

(1) For every transaction that has a written or placeholder version that is ordered after the
discover(s1) version (here the Free version of t2 and the placeholder of t3), retrofitting
creates placeholders on all nodes reachable from the edge’s sink (here all nodes on the path
from s1 to c). The history of s1 in Fig. 8 (d) has two new placeholders labelled 2 and 3 (c
already had placeholders for t2 and t3). This compensates for the fact that the framing phase
of t2 and t3 originally missed the edge that is being added (f1 → s1).

(2) For every written version after the discover(s1) version (here version Free of t2), retrofitting
additionally instructs the propagation algorithm of the respective transaction (t2 in this case)
to enqueue the edge’s sink node (s1) for reevaluation. This compensates for the fact that the
change propagation of t2 originally missed the edge being added (f1 → s1).

For dependency edge removals, both compensations are reversed: Placeholders are removed and
obsolete reevaluations are deleted from the propagation algorithm’s queue.

By changing the reevaluation queue, the scheduler interferes with the reevaluation order devised
by the propagation algorithm. As the original order guarantees glitch freedom, the retrofitting
changes must retain this guarantee, which we prove: A dependency edge change always occurs
during the reevaluation of the edge’s sink node. This means, the reevaluating transaction has the
first placeholder on the sink node and any nodes reachable from there. Because the sink node’s
reevaluation is still ongoing, the sink node is not glitch-free yet, and thus none of these placeholders
can execute their reevaluations and be cleared. Thus, no subsequent transactions can start or have
started a reevaluation on any of these nodes, because their placeholders cannot be the first on
any of these nodes. Hence, no values can exist yet on any of these nodes, which could have been
glitch-free before, but due to the retrofitting changes now no longer are.

The state in Fig. 8 (d) corresponds to one where t2 and t3 started after t1 added the edge f1 → s1.
This shows that retrofitting successfully rewrote all affected nodes’ version histories into a correct
result, despite the timing mismatch of the dependency discovery. From this point on, t3 can complete
framing and all transactions can complete their change propagation normally. The ultimate result,
shown in Fig. 8 (e), is (view-)equivalent to a serial execution of t1 before t2 before t3.

4.3 Properties ofMV-RP

Theorem 1 (Abort-Free Strict Serializability). If all mutable state, used by any reactive’s user
computation to compute its result, is implemented as other reactives and always accessed through
before, after and depend calls, then MV-RP produces only abort-free strict serializable histories.

Theorem 1 states, thatMV-RP fulfils our correctness definition from ğ3.3. Note that the added
premise does not represent a practical hindrance for its applicability. The premise only limits the
theorem’s applicability under user computations that essentially circumvent the RP abstractions by
reading some non-constant parameter values outside of the scheduler’s control.
For space reasons, we provide only an intuition of the theorem’s proof here; the full proof is

available in an extended technical report [Drechsler et al. 2018]. Our proof is built upon a pseudocode
implementation of the scheduling routines and established multiversion theory. Multiversion
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theory defines rules to construct a multiversion serialization graph from a history of individual
reads and writes. The multiversion theorem, proven in literature [Bernstein et al. 1986], states
that a given history is serializable if its multiversion serialization graph is acyclic. Recall that
the MV-RP scheduler tracks the stored serialization graph across the composite RP operations.
The stored serialization graph is intended to represent the multiversion serialization graph, but
both are different graphs. The core of our proof revolves around showing that this representation
is truthful. Our proof first builds several supporting lemmas. It shows, that reevaluations are
correctly executed sequentially on each node, in sync with the serialization order. It then shows,
that all user-visible read operations (i.e. those on nodes’ values vn) correctly await all preceding
transaction’s placeholders to be cleared. Lastly, it shows that for each individual read and write,
once it is executed by the pseudocode routines, a node version exists on some node, such that for
all edges that the individual read or write adds to themultiversion serialization graph, an equivalent
path exists in the stored serialization graph. In other words, the scheduler’s stored serialization
graph is an over-estimation of the actual multiversion serialization graph, containing at least all
its paths or possibly more. This proves that the multiversion serialization graph is acyclic, since
any cyclic path would also exist in the stored serialization graph, but the latter is grown such that
a cycle is never introduced, so no such path can exist. This in turn means, that MV-RP always
fulfils the premise of the multiversion theorem, which thus implies that all histories thatMV-RP

can produce are serializable. As we already discussed above, the extension to strict serializability
is achieved by choosing always the latest possible value to return for reads. Lastly, the absence
of aborts is trivial, since aborts do not occur naturally and the scheduler does not implement any
routines that introduce aborts for transactions.

A noteworthy property of MV-RP beyond its correctness is that its integration into the RP archi-
tecture leaves the user-facing API unchanged. That is, the integration is łsyntactically transparentž
in the sense that no syntactic adaptations of user programs are needed. This is visually apparent in
that the user-defined half in Fig. 3 and Fig. 7 is identical, including all operation arrows across the
dashed border into the RP-internal half (which represent this API). Further, since the scheduler
is abort-free, the integration is also łsemantically transparentž in the sense that its effects are
not observable in the application behavior. As a result, existing REScala code not written with
multi-threading in mind, e.g., the code of the philosopher example shown in ğ2, can run without
any changes on top of MV-RP ensuring its correct execution in a multi-threaded environment.
Notably, the transparent and correct multi-threaded execution includes support for dynamic

dependency changes. This means that MV-RP supports the full expressiveness of dynamically
reconfigurable applications. E.g., it is possible to grow and shrink applications’ dependency graphs
by individual nodes4, or merge and split entire applications’ graphs. This is possible even at run-time,
while other updates are propagating concurrently, and without such changes having been foreseen
or planned during development of the applications. Any number of edges can be added or removed
as part of a single transaction, which yields consistent semantics for atomically (dis-)connecting new
or obsolete nodes or subgraphs. Retrofitting automatically (de-)schedules superfluous or missing
reevaluations of newly (dis-)connected nodes as needed.

4.4 Explicit Transactions

By default, any imperative interaction (any call to s.now or to update(i1 -> v1, i2 -> v2, ...)) is
executed as one transaction. In some cases though, onemay need an atomic unit of work that consists
of multiple imperative interactions. E.g., consider a UI button that fires its clicked Event only if

4In fact, this is what happens when a RP application is started. When code such as that from ğ2 is executed, it imperatively

instructs new nodes to be created one by one. MV-RP then executes one transaction for each node, where the node is first

instantiated and then connected to previously created nodes by dynamically inserting all required edges.
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its enabled Signal reads true. Both the enabled.now read and clicked.fire() change propagation
must be part of the same transaction. Otherwise, a second change propagation might disable
the button concurrently, resulting in the button appearing disabled in its own click propagation
transaction. For this purpose, MV-RP supports the optional feature of extended transactions.
The first form of extended transactions are multiple read transactions that consist of multiple

s.now operations. As an example, consider the following code based on the philosophers example:

2 if (transaction{ fork(0).now == Free && fork(1).now == Free }) phils(1).set(Eating)

Because the transaction scope ensures that both forks’ reads are executed as one atomic unit, this
code behaves identically to a singular sights(1).now == Ready read like in Fig. 1, Line 3.

The second form of extended transactions are read-update-read transactions, which may contain
a single update(...) call surrounded by any number of s.now reads. These transactions allow to
express updates with atomic pre- and post-conditions. They come with one complication related
to the fact that the scheduler must know the set of possibly changed inputs before starting to
execute the transaction. For a single update(i1 -> v1, i2 -> v2, ...) call,MV-RP automatically
infers {i1, i2, ...} from the call’s parameters. But for a call to transaction{...} with an arbitrary
user-defined closure as the only parameter, this is not feasible. Instead, MV-RP requires this set
to be manually declared as a second parameter to the transaction scope. With read-update-read
transactions, we can finally implement the loop iteration from Fig. 1 such that forks are never
used by two philosophers at the same time, by grouping the sights(idx) == Ready check and the
phils(idx).set(Eating) update into a single transaction:

2 transaction(Set(phils(idx))) { if(sights(idx).now == Ready) phils(idx).set(Eating) }

3 if(sights(idx).now == Done) phils(idx).set(Thinking)

4.5 Garbage Collection

Any transaction is considered complete only once it executed all its operations and all preceding
transactions in the stored serialization graph have already completed, too. This restriction mirrors
that of the transition from framing to executing, but for a different reason. Even if a transaction
has no more active or queued reevaluations, its predecessor transactions may perform dynamic
edge changes which necessitate retrofitting and thus enqueue further reevaluations. The only way
to be sure that no further reevaluations will occur is thus to wait until all predecessor transactions
have completed first. Transactions are deleted from the stored serialization graph once they are
complete.
Node versions must be retained as long as any later transactions might still read them. A

written version of a completed transaction in some node’s history is a sufficient condition for all
older versions in that history to be deleted. Versions can be deleted eagerly, by each transactions
upon completion traversing all nodes where it created a version and deleting all older versions.
Alternatively, old versions can be garbage collected in batches periodically, in some way that
minimalizes computational overhead.

5 EVALUATION

We evaluate the performance ofMV-RP relative to several factors: relation between the cost of user
computations and the synchronization overhead, contention level, DG topology, and cost of dynamic
edge changes and handling of their conflicts (retrofitting). In ğ5.1, we evaluate, which topologiesMV-

RP can parallelize, and how costly user computationsmust be for this to be efficient. The experiments
in ğ5.2 investigate scalability as a function of overhead, which itself is a function of contention,
in benchmarks with very cheap user computations, i.e., where scheduling overhead dominates
execution costs. ğ5.3 analyzes the performance costs related to dynamic edge changes. Lastly, ğ5.4

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 107. Publication date: November 2018.



107:18 Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini

quantifies, how much effort is required to parallelize the existing łUniversež RP application from
REScala’s example corpus, and the effect this has on the application’s performance.
Another desirable evaluation approach involves measuring the effect of using MV-RP in real

complex applications beyond the Universe example. But, even evaluating the effects of MV-RP

on multiple complex applications yields no guarantees that the results generalize to other/future
applications. Yet more critically, sinceMV-RP is the first system to enable serializable multi-threaded
RP, no such applications exist yet. Thus, we would have to build one (or more) ourselves for the
sole purpose of our own evaluation, which would unavoidably introduce significant bias. Therefore,
our evaluation does not investigate this direction, but focusses only on building a set of rules that
do allow users to generally estimate the impact that given features of any applications have on
their performance, through the above-mentioned microbenchmarks approach.
Our evaluation compares MV-RP with several alternative scheduling approaches:

• G-Lock implements global locking by wrapping each transaction execution in a global
synchronized{..} scope. This prohibits concurrent executions, but thereby trivially fulfils
our correctness for all applications.

• Handcrafted refers to application-tailored manual locking implementations, which we include
whenever feasible. In Handcrafted implementations, no synchronization is integrated into
the RP runtime. Instead, the imperative user code is changed to manually acquire and release
locks before and after executing any now or update(...). Handcrafted solutions have little
overhead, but often require significant effort to be devised individually for each application,
and are fragile in that they do not generalize to other applications and easily break when
parts of the application are changed. Note that more elaborate Handcrafted solutions become
possible when also acquiring and releasing locks inside of reactives’ user computations
(this would, e.g., enable some cases of pipeline parallelism). But, such solutions are much
more complex to explain, and extremify above-mentioned negative aspects so much that we
consider them unreasonable and hence do not include them in the evaluation.

• STM-RP is an integrated RP scheduler that stores all node variables in ScalaSTM [Bronson
et al. 2010], a library-based off-the-shelf software-transactional memory. Each transaction
execution is wrapped in an atomic{...} scope and executed optimistically, aborting and
restarting upon concurrency conflicts. STM-RP thus does not fulfil our correctness: it provides
strict serializability, but is not abort-free. It is therefore applicable only to applications without
side-effects; for compatibility, all our benchmarks adhere to this.

In all experiments, we measure the throughput (more is better) for an increasing number of
threads that concurrently execute updates. All experiments run on computers with dual Intel Xeon
E5-2670 CPUs for 2x8 cores at 2.6 - 3.3 GHz, using the OpenJDK JMH benchmark harness in the
64-Bit Oracle JRE 8u141 at 1 GB fixed heap under CentOS Linux 7.4. In general, shown results
are average measurements of executing each benchmark operation in every configuration for at
least 35 seconds (after at least 25 seconds unmeasured warmup), repeated six times on fresh JVM
instances each. Every single data point in each of the following chart thus represents at least 3.5
minutes of execution; a data point of, e.g., 50 ops/ms is the average measurement based on the
benchmark operation having executed over 10.5 million times.

5.1 Cost of User Computations and Impact of Topology

Our first set of experiments serves a twofold purpose. First, they analyze, how well MV-RP can
parallelize concurrent updates on different topologies. Second, we analyze, how costly user com-
putations have to be so that scheduling overhead doesn’t reduce throughput more than scaling
increases it. For the first goal, the experiments use a set of minimalized fundamental topology
building blocks. We analyze scalability by measuring throughput across 1 to 16 threads concurrently
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Fig. 9. Scalability across base topologies of updates with approx. 160 µs user computation time.

executing updates on each topology. We sized each of these topologies to contain precisely 16
designated work nodes, so that maximum scalability can be achieved, but only if the framework
actually manages to parallelize each topology down to single nodes. For the second goal, through
trials on each topology, we pinpointed the minimum amount of work per work node, such that
MV-RP provides scalability up to just below 16 threads. We choose the target point just below 16
threads so that the corresponding pinnacle point in the throughput graphs is visible and shows
that the selected amount of work is precisely as large as necessary.
Fig. 9 shows the topologies and resulting throughput graphs. In the topology visualizations,

thicker arrows pointing towards input nodes represent active threads admitting changes. The
color of nodes visualizes a heat map of how much contention these corresponding updates cause
on each node, with darker shades representing higher contention. In the top left experiment,
all updates perform some uncontended workload before funneling into a maximally contended
global bottleneck node. For this topology, each update affects only a single work node (marked W).
Scalability to just below 16 threads (shown in the throughput graph) is reached at a computational
cost (on the hardware we used) of only ca. 160 µs user computation time per work node.

Notice that all topologies in this set of experiments have at least one single node bottleneck for
all updates. Achieving scalability thus requires support for pipeline parallelism.MV-RP features
pipeline parallelism by design. Handcrafted solutions cannot provide pipeline parallelism (without
managing locks from inside user computations), so no Handcrafted measurements are included.
STM-RP can support pipeline parallelism, but only under lucky external circumstances. Such
circumstances are given in this first topology (conflicts can only occur for a brief moment at the
very end of each transaction), but not in the others, thus STM-RP provides scalability only for this
first topology.
In the bottom left experiment, the top left topology is reversed so that updates first pass the

bottleneck and only afterwards reach the parallelizable work nodes. This way, all nodes in the
graph are contended by all threads. To parallelize this topology, multiversion concurrency control
is indispensable: to concurrently recompute all work nodes in different threads, all threads written
values on the topology’s source node must be available to be read simultaneously. The scalability
shown in this experiment’s throughput graph was achieved with each work node performing only
ca. 10 µs of computations, which adds up to again ca. 160 µs for each entire update.
In the top right topology, the work nodes are arranged in a łchainž topology, and the bottom

right łgridž topology is a combination of the previous two experiments, with work nodes arranged
in 4 chains of 4 nodes length each. The throughput scalability shown for both the chain and grid
topologies was also achieved with ca. 10 µs of computations per node, i.e., ca. 160 µs per update.
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All topologies in this set of experiments thus have their inflection point at just below 16 threads at
the same amount of computations per update. The reason for this is as follows. The inflection in
these charts occurs, when the capability of the scheduler to order transactions reaches its limit
and becomes a bottleneck for the transaction throughput. This bottleneck is dependent on the
topology, but only indirectly, in that it depends on how often transactions need to be ordered in
which numbers, which is a consequence of the DG topology. It is independent though, of how the
cost of reevaluations is distributed across the topology. The topologies in this set of experiments all
have the same inflection point because they differ only in the second aspect, but not in the first (in
each topology, every transaction conflicts with all others upon reaching the bottleneck node). We
evaluate the effect of differences in the first aspect in the next set of experiments.

Summarizing this set of experiments, we conclude that MV-RP with multiversions and pipeline
parallelism can parallelize RP updates down to individual nodes, regardless of the DG topology. The
necessary computational cost of user computations per update to overcome the overhead cost of
scheduling up to almost 16 threads is only ca. 160 µs (on our hardware, and assuming that work is
spread evenly across at least 16 nodes). This cost can mostly be considered an upper bound, because
ś as the following experiments will also show ś the bottleneck becomes much less restrictive when
there is less contention between concurrent updates.

5.2 Very Cheap User Computations

Next we analyze scheduling overhead and its impact on scalability in more detail. To do so efficiently,
we use an application with cheap and fast updates, so that the scheduling overhead dominates the
cost of executions and is therefore heavily emphasized in the measurements. Our philosophers
application from ğ2 serves well for this, since the majority of its nodes executes only a single integer
addition and equality check, or even less. The operation (op) that we use as a benchmark always
performs two updates: First, Line 2 from the end of ğ4.4 is repeated until the if-condition passes
and the update to Eating is executed once. Afterwards, a second update changes the philosopher
back to Thinking.
Three aspects ofMV-RP cause overhead: the framing phase, operations on nodes must search

for their correct placement in the version histories, and transaction relations must be recorded in
the stored serialization graph. Clearly, these aspects easily dominate the node computations of the
philosopher application in execution cost. Moreover, the latter two aspects are more expensive
under higher contention (version histories contain more elements and more ordering relations
between transactions are created). Searching node version histories doesn’t necessarily hinder
scalability since it is parallelized along with the node operations (version histories of different
nodes can be searched and changed concurrently), but this also conflicts more frequently under
higher contention. Contention is therefore the most influential factor on scheduling overhead, and
thus also on scalability if updates are cheap. We thus run different configurations of philosophers
that produce different amounts of contention, to evaluate this entire space.
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Fig. 10. Extreme contention.

Extreme Contention. Fig. 10 on the left shows the
topology of the philosophers application from ğ2. This
original configuration is a fairly extreme worst-case
in terms of contention. All forks are contended by
two threads, all sights, Events, and the folding Sig-
nal counts by three, and the summing-up Signal chain
(totalCount) successively funnels all 16 threads into a
single node bottleneck. This bottleneck again means,
we cannot devise a Handcrafted solution better than global locking (without managing locks from
inside user computations). Thus, we compare only G-Lock,MV-RP and STM-RP.
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The chart on the right of Fig. 10 shows the throughput graph of 1 to 16 threads running on a
table of 16 philosophers.5 First, consider the data points for one thread. The throughput of G-Lock
represents synchronization-free single-threaded performance of RP updates, as the overhead of
acquiring an uncontended global lock before each change propagation is negligible. With about
75 op/ms (recall, each op is two updates plus two .now reads in single-threaded measurements),
this corresponds to each update executing in about 6.5 µs time, i.e., updates are indeed very cheap.
Hence, the overhead cost of the other schedulers in a single-threaded environment stands out
clearly: application performance drops by 25% with MV-RP, and by 55% with STM-RP.
Next, consider the configuration with two threads. G-Lock still executes the same workload,

but has become noticeably slower because the global lock is now contended by multiple threads,
i.e., the CPU has to engage its synchronization mechanisms, which makes the lock acquisition
more expensive. For MV-RP, this situation is more complex. With pipeline parallelism, MV-RP

allows very fine-grained parallelization of RP applications (shown in detail in ğ5.1). With only two
threads executing on 16 philosophers, contention is still low enough that they can execute most of
their workload (including scheduling overhead) concurrently. Nevertheless, MV-RP also becomes
noticeably slower, i.e., its scheduling overhead increased significantly. Aside from also having
some contention on the nodes’ locks, this is mainly caused by its initially expensive serializability
mechanisms (large histories, transaction ordering) now having to engage.
For three and more threads, the throughput of G-Lock and STM-RP remains constant, with

STM-RP around 50% lower than G-Lock. For G-Lock this is expected (it prohibits concurrency),
for STM-RP this is because it cannot parallelize updates under high contention of the application.
MV-RP is successful in parallelizing the application’s updates, indicated by its throughput initially
increasing up to around 9 threads. This shows that while initially engaging its serializability
mechanisms significantly increased its overhead, adding on more threads afterwards has less of an
impact. Beyond 9 threads, the potential for parallelization becomes increasingly saturated while
the overhead continues to grow, and thus the throughput decreases again.

Overall, in a setting with extreme contention and very cheap updates the performance ofMV-RP

remains between 5% and 30% lower than G-Lock, i.e., MV-RP fails to improve performance despite
successfully parallelizing updates. This is to be expected because in this setting the synchronization
overhead clearly dominates the cost of what can be parallelized. On the other hand, the overhead
does not make MV-RP unreasonable to use. We consider this scenario an example at the lower
bound for the usability ofMV-RP. In the following experiments in this subsection, we show that
lowering contention allows MV-RP to succeed in scaling performance, even if updates remain
cheap and synchronization overhead still dominates the cost of each update’s execution.

High Contention. First, by removing the summing-up signal chain (i.e., remove Line 29 in ğ2),
we remove the most extremely contended nodes including the bottleneck from the application.
The remaining topology still induces a high amount of contention with most nodes still being
contended by three threads, but no longer contains nodes contended by more than three threads.
Its contention heat map is labelled łHighž in the first row, left-most column of Fig. 11.
Without the bottleneck, we can devise a Handcrafted synchronization: For each phils(i), a

java.util.concurrent.locks.ReentrantLock referenced as lock(i) is added. In order to update a
given phils(i), the executing thread must hold the philosopher’s own lock(i), and both neighbors’
lock(i-1) and lock(i+1) (out-of-bounds indices wrap around). This way, the only interaction that
can occur between concurrently executing updates are concurrent reads affecting some shared

5When there are more philosophers than threads, philosophers are distributed to threads round-robin and each thread for

each measured op picks a random philosopher from its assigned pool (e.g., thread #2 of 5 randomly chooses phils(2),
phils(7) or phils(12)).
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Fig. 11. Throughput for different configurations of the philosophers application.

forks, which is harmless since reads are idempotent and commutative. Threads simply block to
acquire needed locks, ordered by their indices to prevent deadlocks. E.g., to update phils(0),
locks lock(0), lock(1), lock(15) are acquired in that order. Similar to G-Lock, this Handcrafted
approach has almost no overhead (three locks per update, instead of one), but permits parallelization.
The left-most chart in the first row (second column) of Fig. 11 shows throughputs again on a

table of 16 philosophers. Without the summing-up chain, throughput of G-Lock has increased by
about 20%, but follows the same shape as in Fig. 10. Handcrafted performs similar to G-Lock and
does not achieve any scalability. This is because threads queue up while blocking to acquire their
needed locks, and then transitively waiting even for threads with non-interacting updates6. This
shows that such simplistic locking is unsuitable for scenarios with high contention. Adding more
sophisticated mechanisms for dealing with such issues, however, is usually not reasonable, as it
would require to invest yet more effort into a fragile synchronization that cannot be applied to
other topologies and breaks under changes.

ForMV-RP, removing the summing-up-chain reduced single-threaded overhead to 20%, for STM-

RP it is still at 55%. Further, despite the still very high amount of contention causing significant
overhead, MV-RP already does manage to scale throughput, surpassing the performance of G-Lock
and Handcrafted from three threads onwards. This is due to pipeline parallelism providing more
fine-grained mutual exclusion than Handcrafted, blocking threads only on individual nodes and
only as long as necessary, thus threads do not queue up needlessly. STM-RP also achieves speed-ups,
but does not manage to outperform G-Lock even at 16 threads.

Low Contention. To investigate low contention scenarios, we spread threads more thinly by
using a larger table of 64 philosophers. The corresponding topology, with a contention heat map
for an exemplary thread distribution snapshot, is labelled łLowž in Fig. 11 (second row, left-most
column). The left-most chart in that row (second column) shows the experiment’s results. G-Lock
is the same as under high contention, which is expected since the workload per thread is the same.
Contention is low enough that Handcrafted no longer forms excessive queues and can scale across

6The sudden drop in throughput from 8 to 9 threads, which becomes more exacerbated in later experiments, is caused by

queueing times becoming long enough to cross the threshold where ReentrantLock moves from spinning until the lock

becomes available to de-scheduling the requesting thread instead, which leads to a sudden increase in overhead.
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all 16 threads. The throughput ofMV-RP scales about twice as well as under high contention for
large thread counts. Even under low contention, MV-RP still scales better than Handcrafted, from
its 20% lower single-threaded throughput to outperforming Handcrafted by about 10% at 16 threads.
STM-RP also manages to scale above G-Lock from three threads onwards, but still achieves only
approximately 60% of the performance of MV-RP and Handcrafted.

No Contention. As a final variation, we use a fixed placement of one thread on every fourth
philosopher. This allows all threads to execute concurrently without their updates ever interacting,
resulting in zero contention. The corresponding topology is labelled łNonež in the last row of
Fig. 11. Nodes not reevaluated by any thread are faded out through grey outlines, to visualize the
conflict avoidance. The corresponding throughput graph is shown next to it (third row, second
column). G-Lock is again as before, but all other schedulers can now scale freely, without their
differing concurrency management approaches having any effect. Their relative differences are thus
equal across all thread counts (modulo some measurement noise): MV-RP 20% below Handcrafted,
STM-RP 55%.
Comparing this contention-free spacing to the previous experiments, we can now estimate the

cost of contention for each scheduling approach on this application. At 16 threads, low contention
costs about 35% performance when using Handcrafted, 25% when usingMV-RP, and 15% when
using STM-RP. High contention respectively costs about 75% performance under Handcrafted, 60%
underMV-RP, and 45% under STM-RP. Extreme contention is not comparable due to its different
workload (the removed summing-up chain).

Summary. To recap this set of experiments, we have shown that even for updates of only
few computations under high contention, MV-RP is capable of providing scalability with multi-
threading. STM-RP is least affected by contention, but has significantly more overhead, resulting
in performance consistently and significantly lower thanMV-RP and Handcrafted, in addition to
its weaker guarantees (not abort-free). MV-RP manages to outperform Handcrafted under low
contention and even more so under high contention (despite higher single-threaded overhead).
Considering in addition that MV-RP is usable out-of-the-box and applicable to all topologies,
whereas Handcrafted must be manually developed and maintained for each application, MV-RP is
clearly the best choice here.

5.3 Cost of Dynamic Dependency Changes and Retrofitting

To evaluate the scheduling overhead for executing dynamic dependency changes, as well as
for handling the conflicts they produce (i.e., retrofitting), we modify the behavior of nodes that
perform dynamic dependency changes in the philosophers application, i.e., all sights nodes. For
visualization, these nodes are highlighted through bold outlines in the topology overviews of Fig. 11.
They account for ca. 23% of executed reevaluations, with close to 10% of all reevaluations actually
executing a dynamic dependency change.
First, we changed the behavior of sights such that they always access both forks they depend

on, but are still declared as dynamic nodes. The results for these experiments are shown in the
second-to-right column of Fig. 11, labelled łdynamic nodes, static edgesž. This way, no dynamic
dependency changes occur, but the remaining workload of reevaluating these nodes stays nearly
the same in that the RP framework still must collect, which dependencies were accessed, and check
if any changes occurred compared to the previous reevaluation. For the high and low contention
configurations (first and second row), this removes both dynamic dependency changes and their
according retrofitting. For the contention-free configuration (third row), the lack of interaction
between concurrent updates means that the previously executed dynamic dependency changes
never required any retrofitting, and thus only dynamic dependency changes but no retrofitting
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was removed in this configuration. Considering the contention-free configurations first, we see
that all scheduling approaches show an insignificant increase in performance across all threads.
In particular, this includes G-Lock, which implies that this change cannot be attributed to any
operation-specific scheduling overhead, as G-Lock has no such thing. From this we conclude that
dynamic dependency changes have no noticeable cost overhead in any of the scheduling approaches.
Considering the low and high contention configurations, we observe the same changes, meaning
the handling of conflicts of dynamic dependency changes (i.e., retrofitting in case ofMV-RP) on
top of executing the changes themselves also has no noticeable impact on performance.
Concluding the philosophers experiments, we consider a final variation of the sights nodes,

where they declare both forks as their static set of dependencies at initialization, and the RP frame-
work thus no longer collects and compares their accessed dependencies during each reevaluation.
This removes a significant chunk of their reevaluation costs, but this chunk consists only of thread-
local computations that do not involve the schedulers, i.e., scheduling overhead remains unchanged.
The results are shown in the right-most column of Fig. 11, labelled łstatic nodes and edgesž. As
expected, with less computations to be executed under the same scheduling overhead, we observe
noticeable increases in throughput compared to the previous set of experiments (second-to-right
column) across all scheduling approaches, but the schedulers’ overhead is emphasized stronger,
placing them relatively further apart. In particular in the contention-free setup, the throughput
of Handcrafted is much higher than MV-RP or STM-RP, because it has the least overhead (just
three locks per update). Comparing this to the low contention scenario though, shows that this
advantage quickly diminishes, and at high contention even disappears entirely.

Summary. To recap the results from this set of experiments, both the cost of scheduling for dy-
namic dependency changes and of handling the conflicts they cause (i.e., retrofitting) are negligible,
in particular compared to the significant cost of using dynamic dependencies in the first place.

5.4 Parallelizing Existing Applications

As a final experiment, we took an existing REScala case study called łUniversež to evaluate two
research questions: First, how much effort and code changes are necessary to migrate an existing
single-threaded RP application into a multi-threaded environment safely. Second, can this migration
improve the application’s performance. We chose łUniversež for this because it is one of the largest
applications in REScala’s example corpus, and because it has a structure that makes it easy to
introduce multi-threading in its imperative parts.

For the first question, we found that no changes to the RP code of the application were necessary
at all. The only modifications we made were to the application’s imperative code, and these served
only to introduce multi-threading, not to facilitate the integration ofMV-RP: łUniversež implements
a simulation of an ecosystem with plants and animals, which repeatedly executes two phases. First,
a list of tasks for animals and plants to move, feed, grow etc. is populated through a single RP
update (i.e., this phase is not parallelizable). Second, all these tasks ś each of which is again a RP
update ś are executed. Here, we made a single change in that we use a parallel drop-in replacement
from the standard Scala collections library for the list of tasks, which submits all tasks to a thread
pool for concurrent execution instead of running them one by one.
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Fig. 12. Universe case study.

For the second question, Fig. 12 shows the throughput under up
to 16 worker threads. Since the application is only a simulation, it
does not use side-effects, and we were able to include STM-RP in this
experiment. We do not include Handcrafted results, as we deemed
too large the effort of not only precisely analyzing and understanding
the possible topologies of the application’s dependency graph, but
then also trying to find, how ś or if at all ś manual synchronization
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is possible. As a rough intuition though, the application executes a large number of updates across
a very wide graph, meaning even at 16 threads there is still very little contention during each
second phase. Hence, STM-RP is equally capable as MV-RP in scaling the application’s throughput
through multi-threading. Throughput increases less quickly under higher worker threads because
only each iteration’s second phase is parallelized, but first phase execution times remain constant.
Further noteworthy is the application’s unusually heavy use of node creations and removals when
animals and plants are spawned and killed. This gives STM-RP a slight advantage over MV-RP,
because the data structures of STM-RP on the nodes have a smaller memory footprint than those
ofMV-RP, and are thus faster to instantiate.
In conclusion, we find positive answers for both research questions. The necessary effort for

migrating to safe multi-threaded execution is minuscule, and performance increased noticeably.

5.5 Summary

In summary, we draw the following conclusions. First, we have found that the topology of the
dependency graph and whether or not the application uses and possibly has conflicts from dynamic
edge changes do not affect the scalability provided by MV-RP. The only two dimensions we found
to have an impact are conflict density, which depends on how many threads are spread how densely
across a given topology, and the cost of user computations during reevaluations. Fig. 13 visualizes
these dimensions and intuitively positions the experiments we conducted in this space. This shows
thatMV-RP will be beneficial to use for most applications except those that execute updates of only
very cheap computations under extreme thread contention. However, even for those worst-case
scenariosMV-RP is feasible to use with only some overhead over global locking. It is also worth
noting thatMV-RP is still a very young implementation with several potential optimizations not
yet explored or even discovered, so it still has potential for future performance improvements.

Fig. 13. Effects of dimensions of RP applications on MV-RP scalability.

6 RELATED WORK

(Functional) Reactive Programming [Elliott and Hudak 1997] explores time-changing values, and
advanced type systems have been developed that guarantee bounded-space execution [Krish-
naswami et al. 2012], space and time leaks freedom [Krishnaswami 2013] and liveness [Jeffrey
2013]. [Ramson and Hirschfeld 2017] investigates which fundamental abstraction can be used to
implement different RP languages. [Kamina and Aotani 2018] proposes a core RP calculus solely
based on Signals. Another line of research embeds RP abstractions into existing languages. Fr-
Time [Cooper and Krishnamurthi 2006] is a RP in Scheme. Scala.React [Maier and Odersky 2013]
and REScala [Salvaneschi et al. 2014b] implement RP for Scala. Flapjax [Meyerovich et al. 2009]
extends Javascript. Many Javascript frameworks include concepts of RP, e.g., Angular.js, React.js,
Bacon.js, Knockout, Meteor and Reactive.coffee. To our knowledge, none of these frameworks
support concurrent updates.
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Parallel FRP [Peterson et al. 2000] duplicates bottleneck event streams in the DG to increase
throughput, but multiple updates still cannot progress concurrently. Reactive Concurrent Program-
ming [Amadio et al. 2006], despite its very similar name and also providing an abstraction called
signals, is unrelated to FRP and RP signals; it is instead a programming language for collaborative
multi-threading, which by łsignalsž refers to an abstraction that imitates traffic lights, where
concurrent threads temporarily stop and wait for each other to synchronize their progress.
Lastly, there are several (F)RP systems that address concurrency and support parallelism in

different ways; we discussed their properties and relations to our work in ğ1.
Distributed RP systems are intrinsically subject to concurrency. AmbientTalk/R [Lombide Car-

reton et al. 2010] is RP for mobile peer-to-peer networks. It supports loosely coupled networks
instead of providing distributed strong consistency like glitch-freedom, and local propagations
on each host are single-threaded only. Distributed REScala [Drechsler et al. 2014] implements
distributed RP with glitch-freedom, but uses global locking to avoid concurrency problems. DREAM
is a RP middleware [Margara and Salvaneschi 2014, 2018], supporting concurrent updates with
choosable consistency levels, including glitch-free and transactional, but it does not support dy-
namic dependency changes. Fault-tolerant Distributed RP [Mogk et al. 2018] introduces error
propagation and crash recovery for reactives and executes updates glitch-free by mutual exclusion
on each host, but supports distribution only through conflict-free replicated data types with even-
tual consistency and therefore supports some concurrency in the global propagation, but only with
eventual consistency instead of glitch freedom. (F)RP has been also studied in combination with
multitier programming for distributed applications in ScalaLoci [Weisenburger et al. 2018] and
tailored towards web applications [Reynders et al. 2014]; these works allow reactives of arbitrary
types to be sent to different hosts, but focus on the language design benefits and synergies of
multitier and reactive programming instead of solving consistent distributed propagation, and
therefore also only execute updates glitch-free by mutual exclusion per host, but do not provide
glitch freedom across the whole application.
Incremental computing describes approaches that take existing concurrent algorithms and au-

tomatically incrementalize them. Different approaches address different programming models,
parallelism and memory models, including functional fork/join-parallel programs [Hammer et al.
2007], imperative fork/join-parallel programs [Burckhardt et al. 2011], MapReduce programs for
Big Data [Bhatotia et al. 2011], and even shared-memory multi-threaded programs [Bhatotia et al.
2015]. They all achieve incrementalization by recording a dependency graph of chunks of the
original algorithm during an initial, non-incremental execution. Afterwards they incrementally
update the result by selectively propagating input changes across this dynamic dependency graph,
re-executing chunks as needed. These works therefore have significant similarities with RP change
propagation, but they address a different dimension of parallelism. They incrementalize programs
that already correctly use parallelism, and then replay this parallelism during singular incremental
update propagations. Our work on the other hand addresses safely adding parallelism where there
was none before, in the form of allowing multiple different incremental update propagations to
execute concurrently.
Event Processing Languages and Middleware propagate events to interested clients, similar to

change propagation in RP between Events. Publish-subscribe systems [Eugster et al. 2003] aim
to support loose coupling among event publishers and observers. By contrast, complex event
processing (CEP) [Cugola and Margara 2012] is about correlating events. Both rely on callbacks,
which RP aims to avoid [Meyerovich et al. 2009]. Reactive extensions first became popular through
Rx.NET [Liberty and Betts 2011], but are available in many languages today (e.g., RxScala ś not
to be confused with Scala.Rx). They provide convenient syntactic features for event streams and
asynchronous computations, but no support for glitch-freedom. Stream processing is increasingly
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supported in a number of languages, including Java 8 (the stream-based collections interface)
and Akka streams, but is aimed at supporting pipeline and/or data parallelism of sequential or
independent events, not at providing consistent semantics for interacting concurrent events.
Imperative concurrency control. Small-scale concurrency tools, e.g., atomic compare-and-swap

operations or locks for mutual exclusion, are ubiquitous, but hard to compose. Futures and
async/await [Tasirlar and Sarkar 2011] are abstractions for conveniently handling and compos-
ing asynchronous tasks. Actors [Agha 1986] are a message passing-based programming model
for loosely-coupled distributed and concurrent event-driven applications. Software Transactional
Memory [Shavit and Touitou 1995] schedules arbitrary, composable [Ni et al. 2007] read/write
transactions, Reagents [Turon 2012] are abstractions for implementing data structures that can
be safely composed into concurrent algorithms. Both use łoptimistic lockingž which is ill-named
since transactions are executed speculatively without locking accessed variables, but are only
committed if no race conditions occurred until they complete and otherwise aborted. Compared to
these solutions, MV-RP provides concurrency management integrated into a fully declarative and
dynamically composable programming model.
Scheduling Algorithms from Databases. Most research into scheduling algorithms has been

conducted in the scope of database transactions. MV-RP is build upon MVCC and C2PL, which
both originated from databases [Bernstein et al. 1986]. We discussed their pure forms extensively
throughout the paper, but several variations exist. MVCC can be used in different ways to provide
weaker guarantees than serializability, e.g., snapshot isolation [Berenson et al. 1995]. C2PL is one of
many locking algorithms, all of which provide strict serializability but with different requirements
and properties. In general, 2PL (two-phase locking) states that if locks are acquired in any order but
not released during a growing phase, and then released but not acquired during a shrinking phase,
strict serializability is achieved. In its rudimentary form, 2PL is prone to deadlocks, so it requires
aborts. In Ordered 2PL, locks must be acquired during the growing phase following a fixed global
order. This avoids deadlocks and thus provides abort-free execution, but is inapplicable to RP because
the dynamic DG does not allow transactions to adhere to a fixed locking order. Tree locking [Lanin
and Shasha 1990] uses a similar approach, replacing the two-phase restriction by moving a locked
interval along every node on paths in trees as the locking order. DAG locking [Chaudhri and
Hadzilacos 1995] generalizes tree locking to directed acyclic graphs, such as the RP DG. Both tree
and DAG locking are special cases of domination locking [Golan-Gueta et al. 2011] for yet more
general graphs. None of these are applicable to RP either though, because they require łinwardsž
graph traversals from all predecessors of a node to that node, whereas RP change propagation
traverses outwards from each changed node to all successors.

7 CONCLUSION

We propose a language model for thread-safe RP based on abort-free strict serializability to en-
sure correct behavior under concurrency. We present a corresponding scheduler, integrated into
the language runtime, and prove its correctness. The implementation of our approach hides the
complexity of concurrency management from developers and is available as an extension of the
REScala programming language. Our evaluation shows that applications scale with multi-threading
and exhibit acceptable performance overhead.
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