
Distributing Thread-Safety for Reactive Programming
In-Progress Paper

Drechsler, Joscha
Technische Universität Darmstadt
Darmstadt, Hessen, Germany
drechsler@cs.tu-darmstadt.de

Mezini, Mira
Technische Universität Darmstadt
Darmstadt, Hessen, Germany
mezini@cs.tu-darmstadt.de

Abstract
Reactive Programming (RP) is a programming paradigm for
implementing interactive applications modularly and declar-
atively. Many interactive applications today are distributed,
and thus supporting RP for distributed applications is an
interesting research avenue. One of the key benefits of RP is
that it avoids “callback hell” through providing consistent
update semantics in the form of glitch-free change propaga-
tion. Previous research has developed separate solutions for
decentralized glitch-free change propagation and thread-safe
glitch-free change propagation. This paper aims to combine
these works and provide an algorithm for glitch-free change
propagation that is both thread-safe and decentralized, and
thus suitable for distributed applications.

1 Introduction
Reactive Programming (RP) [1] is a programming paradigm
for implementing interactive applications modularly and
declaratively. It provides two fundamental programming ab-
stractions, referred to as reactives: Events for event-based
programming, and Signals for constraint-based state man-
agement similar to spreadsheet formulae. Signals and Events
are combined and derived from each other, and these de-
pendency relations are tracked by the run-time to form the
directed acyclic dependency graph of an application.

Imperative processes in applications (e.g., user pressing a
key) can change designated input reactives. RP then prop-
agates these changes across the dependency graph, recom-
puting all (transitively) affected reactives. RP systems use
propagation algorithms, which assess the topology of the
dependency graph to provide glitch freedom consistency
during this change propagation. Glitch freedom ensures a
well-defined update order for reactives’ recomputations and
thus avoids “callback hell”, where applications are subjected
to obfuscated, incidental control flow. It ensures that invari-
ants (e.g., an index Signal is never out of bounds of a corre-
sponding array Signal) of programs during quiescence (i.e.,
while no changes are propagating) also hold while depen-
dent reactives are being recomputed. Glitch freedom thus is
a major contributor to the ease-of-use of RP.

REBLS’18, August, 4, 2018, Boston, MA, USA
2018.

To facilitate the implementation of distributed applications
with RP, locally defined Events and Signals can be shared
remotely [4, 11, 12]. Other hosts can use remotely received
reactives transparently as if they were local: They can derive
new local reactives from them, or combine them with other
local or remotely received reactives. In distributed RP, the
dependency graph thus is a distributed data structure, with
some dependency edges crossing network edges.

Figure 1. Anatomy of local, single-threaded RP

Figure 1 shows the components of a local, single-threaded
reactive application, and how they call each other to prop-
agate changes: The imperative environment (bottom left)
submits changes to input reactives (triangles) to the propa-
gation algorithm (bottom right), which instructs dependent
reactives (circles) in the dependency graph (top right) to re-
compute by (re-)evaluating their defining user computations
(top left). The classically used propagation algorithm in this
setting achieves glitch freedom by processing all affected
reactives through a priority queue. In the distributed set-
ting, this is not feasible because the queue would become
a centralized coordinator that must sequentially process all
affected reactives of the distributed dependency graph.
Several recent works propose decentralized propagation

algorithms [7–10], but most lack support for at least one of
RP’s features (Signals, Events, or dynamic changes of the
dependency graph topology). The SID-UP propagation al-
gorithm in Distributed REScala [4] is the only algorithm to
support all of these features, but can not actually be applied

1

REBLS’18, August, 4, 2018, Boston, MA, USA Drechsler, Joscha and Mezini, Mira

Figure 2. Anatomy of distributed, single-threaded RP

to distributed applications without adding a centralized co-
ordinator to prohibit concurrency. Figure 2 visualizes, how
SID-UP models a distributed reactive application: Reactives
in the dependency graph – along with their defining com-
putations – exist on different hosts, visualized through light
and dark gray shades. Beyond that though, SID-UP assumes
that only one single-threaded imperative thread exists in
the entire application (a 1:n relation between threads and
hosts), which in practice is almost never true. In addition to
the dependency graph becoming a distributed data structure,
distribution implies that multiple CPUs collaborate across
network connections, which means that every distributed
system is naturally also concurrent with multi-threading.
Multiple propagation algorithm instances may execute si-
multaneously, leading to race conditions between their opera-
tions that break any consistency guarantees if not controlled.
Thus, a distributed propagation algorithm must be not only
decentralized, but also thread-safe.

Figure 3. Anatomy of local, multi-threaded RP

Thread-safety for Reactive Programming has been solved
only very recently, and only for the local setting. MV-RP [2]
is a scheduler add-on for propagation algorithms to add
thread-safety on top of any glitch-free change propagation.
Figure 3 visualizes the anatomy of local, but multi-threaded

RP applications as supported by MV-RP: Multiple imperative
threads spawn multiple concurrently executing instances
of propagation algorithms, and their operations are subject
to race conditions when concurrently accessing the single
dependency graph in shared memory (a n:1 relation between
threads and hosts). MV-RP intercepts the method calls be-
tween imperative environment, propagation algorithm and
dependency graph. Calls by the imperative environment are
implicitly wrapped into transactions and used to precompute
update schedules on the dependency graph. Subsequent calls
to the dependency graph, once the propagation transaction is
executing, are then internally ordered, delayed and executed
according to these schedules. Overall, this orchestration re-
sults in serializable execution for transactions: they execute
concurrently, but all values visible to user code look iden-
tical as if transactions executed sequentially, one after the
other. Moreover, by exploiting synergies with RP semantics,
MV-RP never needs to abort any transactions due to, e.g.,
being stuck in deadlocks, even under dynamic changes of
the dependency graph topology.

Figure 4. Anatomy of distributed RP

Unfortunately, it is not feasible to simply add the MV-RP
scheduler for thread-safety on top of the SID-UP distributed
propagation algorithm. Figure 4 visualizes the anatomy of
distributed RP applications with concurrency; we again use
light and dark gray shading to visualize different hosts: Mul-
tiple threads on multiple hosts spawn multiple propagation
transactions, all of which can affect reactives on remote hosts
(a n:n relation between threads and hosts) where they can
interact with any transactions from any remote hosts. The
MV-RP scheduler globally orders interacting transactions in
the directed acyclic stored serialization graph, which in this
setting thus also becomes a distributed data structure that
all hosts try to query and modify concurrently. To ensure
linearizability for modifications of the stored serialization

2

Distributing RP Thread-Safety REBLS’18, August, 4, 2018, Boston, MA, USA

graph, the original (local-only) MV-RP uses a singleton ex-
clusive lock, which is unsuitable for distributed applications.
This shows that not only the propagation algorithm must be
decentralized, but also the concurrency scheduler.

In this paper, we devise a decentralized variation ofMV-RP,
to integrate with the SID-UP decentralized propagation algo-
rithm. To this end, Section 2 presents a detailed analysis of
the implications of distribution on all data structures of MV-
RP and all their operations, and derives their requirements
for the distributed setting. Section 3 then engineers a proto-
type decentralized implementation of the MV-RP scheduler.
Finally, Section 4 discusses the combination of SID-UP and
MV-RP, presenting redundancies and synergies between the
algorithms that allow for simplifications and optimizations.

2 The Impact of Distribution on MV-RP
MV-RP uses two data structures: node version histories and
the stored serialization graph (SSG). We investigate both.

2.1 Node Version Histories
Every reactive holds one instance of a node version history.
Each node version history is a list of versions – planned and
past values of the reactive’s variables. These include refer-
ences to all reactives that the reactive depends on (predeces-
sors), or that depend upon the reactive (successors). Thus,
node version histories are the backbone of the dependency
graph, i.e., form a distributed data structure. Node version
histories provide the following linearizable operations:
• now, after/depend, before: read the user value in vari-
ous temporal relations to the current execution context.

• reev-in: start reevaluating after all dependencies have
become glitch-free.

• reev-out: complete reevaluating, add/remove predecessor
edges for new/obsolete dependencies, and retrieve the
current set of successors (since they may have become
ready to reevaluate).

• drop, discover: add/remove a reactive to/from the set of
successors.

Each of these operations only affects variables within the
respective node version history instance. Therefore distribut-
ing node version histories does not require any operations to
be implemented linearizable across remote references. Node
version histories may store remote references and pass them
around through parameters and return values of their opera-
tions, but they never need to operate over them. Therefore,
node version histories do not have any algorithmic require-
ments in order to be used in a distributed setting.
The only aspect worthy of consideration is that all val-

ues of remotely shared reactives will usually be read (op-
erations of the first bullet point) on every remote host at
least once, and often even multiple times, by dependant reac-
tives and regular processes. As such it is advisable to cache
replicas of remotely shared reactives’ values on all remote

copies, to avoid redundant network traffic and minimize the
latency of such reads. This replication is not a big challenge
though. MV-RP stores transactions values separately, and
each transaction writes each reactive’s only once and never
changes it again. This means, writing reactives’ values is
an append-only process and therefore easy to replicate be-
cause replicated values never become outdated and never
require invalidation. Moreover, new values can be pushed
out piggybacked onto the messages to re-check dependant
reactives on remote hosts for glitch-free reevaluation readi-
ness. This way, eager replication of reactives’ values can be
implemented at almost no extra cost.

2.2 Stored Serialization Graph
In the directed acyclic SSG, MV-RP tracks the partial serial-
ization order of all transactions, i.e., the order in which they
appear to atomically execute. It is constructed incrementally,
with new ordering relations being established when trans-
action execute operations on reactives where others have
previously executed non-commutative operations. Transac-
tions in the SSG store their current phase (Framing while pre-
computing an update schedule, then Executing, and finally
Completed), and a set of predecessor and/or successor trans-
actions. Since all hosts in a distributed application should be
allowed to start transactions, predecessor and successor rela-
tions may involve remote references, meaning the SSG is also
a distributed data structure. We list all operations supported
by the SSG and how they are affected by distribution:

• Exists Path: Query, in which direction two transactions
are ordered, or if they are not ordered yet. MV-RP uses
“Exists Path” to determine valid placement of transactions
in node version histories. As such, it is executed very
often (insertion into each reactive’s sorted history of n
versions requires loд2(n) queries), particularly more often
than new edges are created. Further, it is accessed heavily
concurrently, by multiple concurrent reevaluations within
multiple concurrent transactions. Thus, “Exists Path” re-
quires a fast and highly concurrent implementation, mean-
ing ideally non-blocking and backed by – in distributed
applications – locally replicated data. Fortunately, like re-
active’s values, SSG replication is not challenging, because
the SSG is also an append-only data structure: Only new
edges are added, but existing ones are never changed and
never become invalid.

• Add Acyclic Edge: If a transaction is not ordered against
all other transactions in a node version history that it ac-
cesses, MV-RP optimistically decides on an order where
it should be placed. It then tries to implement this order
globally, by establishing up to one predecessor and suc-
cessor edge through “Add Acyclic Edge” for the directly
preceding or succeeding transaction in that history (all
other relations then follow by transitivity). The order may
(have) become redundant or invalid though, due to other

3

REBLS’18, August, 4, 2018, Boston, MA, USA Drechsler, Joscha and Mezini, Mira

threads also establishing ordering relations concurrently.
To guard against such race conditions, “Add Acyclic Edge”
atomically executes the following steps: First, use “Ex-
ists Path” in the reverse direction of the edge to check
if the edge would close a cycle. Second, insert the edge
only if it does not create a cycle. As an extreme example,
two reactives, independent of each other in the depen-
dency graph topology, may simultaneously request the
insertion of two edges between four different transactions,
but other previously established relations between these
transactions transitively imply that inserting both these
edges would close a cycle. In a distributed application,
both reactives, all transactions and all previously estab-
lished relations involved in this scenario may originate
from different hosts. This operation therefore poses very
challenging algorithmic requirements, making it very dif-
ficult to implement decentralized. It requires to verify the
absence of a potentially distributed path and to prevent
concurrent executions on any other hosts from creating
such a path until the insertion of the respective edge has
been completed and communicated to these hosts.

• Iterate Predecessors:MV-RP allows transaction to progress
their phase from Framing to Executing or Executing to
Completed only after all predecessor transactions have
already done the same progression. Therefore, the SSG
must provide a way for transactions to iterate their current
predecessors. The data already required for “Exists Path”
queries is sufficient to iterate all predecessors. Thus this
operation does not introduce any further requirements in
distributed applications.

• Get Phase: Transactions must be able to query the phase
of other transactions for three reasons. First, to ensure
that phase switches occur only after predecessors’ (see
previous point). Second, when creating transaction orders,
framing transaction must never ordered before executing
transactions, to maintain the invariants established by
the first point. Third, garbage collection needs to know if
transactions are completed, in order to remove no longer
needed versions and SSG nodes and edges. Again, the
phase of a transaction is likely to be read much more often
than written (at most two phase switches). Thus this data
should also be replicated in distributed applications. Phase
progression is also append-only though (transaction only
ever switch to the next phase, but never back), and thus
this replication again is not very challenging.

• Progress Phase: Transactions progressing their phase
may allow some successor transactions to progress their
own phase next. In distributed applications, such succes-
sor transactions may reside on remote hosts. Thus, a dis-
tributed implementation must support notifying successor
transactions through remote messages. Because phase pro-
gression is append-only, this does not require any kind

of synchronization. Moreover, if current phases are repli-
cated on remote hosts, these notifications can be piggy-
backed onto the phase replica updates. Thus “Progress
Phase” also introduces no further requirements and can
be implemented at almost no extra cost.

To conclude, distributing the SSG is straight forward in that
all operations except “Add Acyclic Edge” require at most
replicating append-only data. Only “Add Acyclic Edge” has
complex algorithm requirements, for which finding a de-
centralized implementation is very challenging because it
requires synchronization across an arbitrary number of in-
dependent hosts. In the following section, we present one
prototype solution to this problem.

3 Building Blocks for Distributed MV-RP
“Exists Path” and “AddAcyclic Edge” in the original local-only
MV-RP are based on a partially dynamic graph algorithm
for maintaining the transitive closure under only edge in-
sertions, but not deletions [6] – the precise scenario that
MV-RP requires. In its original form, this algorithm imple-
ments operations “Get Path” and “Add Edge” both in O(n)
amortized time, by internally maintaining for each node one
hash-indexed spanning tree of transitively reachable nodes.
MV-RP adapts this algorithm to implement “Exists Path” and
“Add Acyclic Edge” in the following ways.

The original “Get Path” uses the source’s hash index to
find the sink’s node in the source’s spanning tree in O(1). If
the spanning tree node does not exist in the hash index, then
there is no path from source to sink. If it does exist, traversing
all nodes along the spanning tree upwards to the root returns
one proven path from sink to source in O(n). MV-RP uses
only the first step of this implementation – looking up the
spanning tree node in O(1) – and then immediately returns
true or false if it exists or not, which implements “Exists Path”
in O(1). “Add Acyclic Edge” is implemented as a conditional
“Exists Path” query with sink and source reversed, to ensure
that no reverse transitive path exists, and then “Add edge”.
This puts “Add Acyclic Edge” in O(1 + n), i.e., also in O(n).

Linearizability for “Exists Path” is based on the internally
maintained spanning trees being grow-only data structures:
“Add Edge” may insert additional nodes into the hash index
and spanning trees, but all existing elements remain un-
changed. By using a thread-safe non-blocking hash index for
the spanning tree nodes, the “Exists Edge” O(1) query thus
automatically becomes a linearizable and fully non-blocking
operation. This implementation can simply be reused in a
distributed implementation where the spanning tree index
is replicated to each remote host.
Linearizability for “Add Acyclic Edge” on the other hand

is achieved by mutual exclusion through a central lock for
two reasons. First, it ensures that there are no racing writes
from concurrent “Add Edge” executions that could corrupt
the hash-indexed spanning trees. Second, it ensures that the

4

Distributing RP Thread-Safety REBLS’18, August, 4, 2018, Boston, MA, USA

preceding “Exists Path” query to prevent cycles returns a
reliable result in that no racing “Add Edge” can establish this
path concurrently. Because of the centralized lock, this im-
plementation is not feasible to use in distributed applications,
and a decentralized implementation is necessary instead. The
next section presents a modified union-find data structure
that we call lock-union-find, that allows us to associate one
lock with each connected component of an undirected graph.
The section afterwards then discusses a decentralized “Add
Acyclic Edge” implementation based on lock-union-find.

3.1 Lock-Union-Find
A union-find data structure [5] associates a single represen-
tative element for each connected component of a graph
under the partially dynamic case of edge additions, but not
removals. Each node maintains a pointer that is either null,
indicating the representative of a connected component, or
points to a different node, in which case the representative
can be reached by following these pointers recursively – this
is the “Find” operation. When an edge is inserted between
two nodes, the representatives of both nodes’ connected com-
ponents are looked up through “Find”, and then one’s pointer
is set to the other, unless they are the same already. This way,
the nodes of both connected components are unified under
the same representative – the “Union” operation.

1 procedure l o ck (node) :
2 l e t found := f i n d (node)
3 i f (CAS (found . p t r , nu l l , found)) r e t u r n found
4 e l s e r e t u r n n u l l

6 procedure lockUnion (node1 , node2) :
7 l e t l o cked : = l o ck (node1)
8 i f (l o cked == nu l l) r e t u r n n u l l
9 e l s e :
10 l e t found := f i n d (node2)
11 i f (found == lo cked) r e t u r n l o cked
12 e l s e i f (CAS (found . p t r , nu l l , l o cked)) :
13 r e t u r n l o cked
14 e l s e :
15 l o cked . p t r : = n u l l / / un lock
16 r e t u r n n u l l

Figure 5. Pseudocode of “Lock” and “LockUnion”.

Our lock-union-find data structure extends union-find
twofold: First, it adds a third pointer state: A node whose
pointer points to itself represents that the connected compo-
nent is currently locked. Second, it adds a “Lock” operation,
and replaces “Union” with “LockUnion”. Figure 5 shows pseu-
docode implementations1 for both operations:
• “Lock” can either succeed or fail. It executes “Find” and
then tries to atomically compare-and-set the representa-
tives pointer from null to the representative itself. If that

1In practice, both implementations are significantly more complex since
they perform additional tasks that are not relevant here, e.g., non-blocking
path compression (for near O(1) amortized runtime complexity) and non-
blocking manual reference counting (for distributed garbage collection).

succeeds, “Lock” succeeds and returns the now-locked
representative. If it failes, “Lock” fails and returns null.

• “LockUnion” can also either succeed or fail. It first tries
“Lock” on the first node. If that fails, “LockUnion” also fails.
Otherwise, it continues with “Find” on the other node. If
the second node’s found representative is the same as the
first node’s locked representative, “LockUnion” succeeds
immediately, since both nodes are already part of the same
now-locked connected component. Otherwise, “LockU-
nion” next tries to atomically compare-and-set the found
representative’s pointer from null to the locked represen-
tative. If that succeeds, “LockUnion” succeeds with both
nodes now unified within the same locked connected com-
ponent. Otherwise, the locked representative is unlocked
again (pointer reset to null) and “LockUnion” fails.

Semantically, both “Lock” and “LockUnion” fail if they in-
volve any already locked connected component. Lock-union-
find thus associates an exclusive lock with each connected
component of a graph that, while held, also prevents the con-
nected component from growing. The exclusive use of atomic
compare-and-set instructions ensures linearizable execution
for both “Lock” and “LockUnion” without further coordina-
tion, meaning their implementations are decentralized. By
allowing remote references in the pointer, lock-union-find
thus is feasible to use in distributed applications.
1 procedure addAcyc l i cEdge (source , s i nk) :
2 i f (e x i s t s P a t h (source , s i nk)) r e t u r n t r u e
3 i f (e x i s t s P a t h (s ink , s ou r c e)) r e t u r n f a l s e
4 l e t l o cked = lockUnion (source , s i nk)
5 i f (l o cked == nu l l) : / / t a i l r e c u r s i v e
6 r e t u r n addAcyc l i cEdge (source , s i nk)
7 e l s e t r y {
8 i f (e x i s t s P a t h (source , s i nk)) r e t u r n t r u e
9 e l s e i f (e x i s t s P a t h (s ink , s ou r c e)) r e t u r n f a l s e
10 e l s e :
11 l e t changes = addEdge (s ink , s ou r c e)
12 upd a t eA l l R e p l i c a (changes)
13 r e t u r n t r u e
14 } f i n a l l y { l o cked . p t r : = n u l l } / / un lock

Figure 6. Pseudocode of “Add Acyclic Edge”.

3.2 Mutual Exclusion through Lock-Union-Find
Figure 6 shows the pseudocode implementation of the dis-
tributed decentralized “Add Acyclic Edge” implementation.
It adds a lock-union-find layer over the SSG of replicated
hash-indexed spanning trees of transactions. Each newly
created transaction initially forms a connected component
by itself. To order two transactions, “Add Acyclic Edge” first
repeatedly tries to “LockUnion” them. If an order is estab-
lished by racing concurrent threads, “Add Acyclic Edge” ter-
minates prematurely. Otherwise, “LockUnion” eventually
succeeds with both transactions unified in a single locked
connected component. Then, “Add Edge” is executed locally,
the resulting changes are pushed to all replica of the affected
hash-indexed spanning trees, and finally the connected com-
ponent is unlocked again.

5

REBLS’18, August, 4, 2018, Boston, MA, USA Drechsler, Joscha and Mezini, Mira

Mutual exclusion per connected component is more fine-
grained locking than what local-only MV-RP implemented,
allowing concurrent executions of “Add Acyclic Edge” in
some cases. We show that “Add Acyclic Edge” is still lineariz-
able though, and thus the correctness of MV-RP is unaffected
by this change: If concurrent “Add Acyclic Edge” operations
would create a cycle (or interact with each other in any other
way), all involved transactions would afterwards be part of
the same connected component. Therefore, checking “Exists
Path” and executing “Add Edge” only after the respective
transactions have been unified into one exclusively locked
connected component prevents this case.

4 Synergizing MV-RP and SID-UP
We now consider the combination of decentralized MV-RP
with decentralized SID-UP [4]. In its essence, SID-UP is a
single-pass variation of a two-pass parallel mark-and-sweep
(mark pass: mark all affected nodes dirty, sweep pass: re-
validate any dirty nodes once they have no more dirty prede-
cessors). It uses source identifier sets to determine the results
of the mark pass implicitly during the sweep pass, and thus
works without executing mark passes: Every node holds a
set of all sources it is reachable from. Any given node would
have been marked by a preceding mark pass, if the intersec-
tion of its source set and the set of sources from which a
given change propagation originated is non-empty.
SID-UP’s basic implementation exerts a lot of redundant

effort, because each node for every received re-validation
message has to iterate all its predecessors and determine if
any are still marked. SID-UP thus developed several opti-
mizations to its single-pass sweep phase [3]:

• Nodes with only a single static dependency always reeval-
uate immediately upon re-validationmessages. They never
need to assess all their predecessors, because they can
never have a second dependency that is not re-validated.

• All other nodes only iterate their predecessors a single
time, instead of once for each received re-validation mes-
sage. Before processing the first re-validation message of
each change propagation, each node iterates its predeces-
sors to count the number of marked ones. This value is
used to initialize a “marked predecessors” counter. A sec-
ond “changed predecessors” counter is initialized with 0.
Each re-validation message carries a “changed” bit that re-
flects, whether or not the sending node changed its value.
For each received re-validation message, the “marked pre-
decessors” counter is decremented, and – if the “changed”
bit is set – the “changed predecessors” counter is incre-
mented. Once the “marked predecessors” counter reaches
0, all predecessors have been re-validated and the node can
re-validate. If the “changed predecessors” counter is not 0,
the at least one predecessor has a new value and the node
must thus recompute its own value to re-validate itself.
Both counters are further affected by dynamic changes

of the dependency graph’s edges: If an edge is added (re-
moved) from the dependency graph, then on the edge’s
sink node (a) the “marked predecessors” counter is incre-
mented (decremented) if the edge’s source node is marked,
and (b) the “changed predecessors” counter is incremented
(decremented) if the edge’s source node changed its value
previously within the same change propagation.

Opposing SID-UP’s single-pass philosophy, MV-RP has
shown that strong consistency under multi-threading re-
quires a two-pass algorithm in order to avoid deadlocks
between concurrent change propagations. This means, that
any extra effort exerted by propagation algorithms to pro-
vide glitch freedom in only a single pass change propagation
(e.g., SID-UP maintaining source identifier sets on each node)
is redundant, assuming equivalent results can be achieved
by piggybacking a mark pass on MV-RP’s Framing phase. In
the case of SID-UP, not only is this possible, but the concur-
rency scheduling provides the required information for free
already, and no extra effort needs to piggybacked on. For
any change propagation, the set of marked nodes for which
SID-UP would compute a non-empty source set intersection
is identical to the set of nodes on which MV-RP allocates
placeholder versions while pre-scheduling updates in the
Framing phase. The Executing phase’s sweep pass thus can
simply consider every node as marked iff it has a placeholder
version. This way, the combination of SID-UP and MV-RP
works without source identifier sets.

A further optimization becomes possible due to the combi-
nation of two-pass mark-and-sweep with SID-UP’s counters
optimization. Instead of nodes initializing their “marked pre-
decessors” by iterating all predecessors before processing the
first re-validation message of each propagation, all “marked
predecessors” can be counted incrementally during the fram-
ing phase. Whenever a transaction’s Framing phase reaches
a node, the “marked predecessors” counter of a newly created
placeholder is initialized with value 1, or the counter of the
already existing placeholder is incremented. This way, when
the framing phase completes, every node’s “marked prede-
cessors” counter has already been set up correctly. Thus,
with this combination of SID-UP plus MV-RP, nodes never
need to iterate their predecessors, meaning this extended
optimization also supersedes SID-UP’s other operation.

As a final aspect, MV-RP requires propagation algorithms
to implement an additional interface for (de)queueing addi-
tional reevaluations when dynamic changes of dependency
edges execute with a mismatch between serializability time
and real time. In the combination with optimized SID-UP,
the implementation of this interface is exactly the regular
implementation of SID-UP’s counter updates on dynamic
dependency changes. The only difference is, that after a sin-
gle transaction added or removed a single dependency edge,
MV-RP will execute the respective counter updates for that
transaction and all later transactions.

6

Distributing RP Thread-Safety REBLS’18, August, 4, 2018, Boston, MA, USA

5 Conclusion and Future Work
We have analyzed the requirements for a distributed RP prop-
agation algorithm for glitch-free change propagation that
is both decentralized and thread-safe, based on a combina-
tion of the SID-UP propagation algorithm and the MV-RP
concurrency scheduler. We have presented a decentralized
variant of the MV-RP scheduler, and discussed its combina-
tion with SID-UP, pointing out redundancies and synergies
which result in both simplification and optimization. In the
future, we want to design an evaluation for distributed RP,
to either show the usability of our solution, or discover its
weak spots and research better implementation alternatives.

Acknowledgments
This work has been supported by the European Research
Council, grant No. 321217.

References
[1] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,

Stijn Mostinckx, and Wolfgang de Meuter. 2013. A survey on reactive
programming. ACM Comput. Surv. 45, 4, Article 52 (2013), 34 pages.
https://doi.org/10.1145/2501654.2501666

[2] Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini.
2018. Thread-Safe Reactive Programming. In Proceedings of the 2018
ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’18). ACM, New York, NY, USA.

[3] Joscha Drechsler and Guido Salvaneschi. 2014. Optimizing Distributed
REScala (REBLS’14).

[4] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
2014. Distributed REScala: An Update Algorithm for Distributed Re-
active Programming (OOPSLA ’14). ACM. https://doi.org/10.1145/
2660193.2660240

[5] Bernard A. Galler and Michael J. Fisher. 1964. An Improved Equiv-
alence Algorithm. Commun. ACM 7, 5 (May 1964), 301–303. https:
//doi.org/10.1145/364099.364331

[6] G.F. Italiano. 1986. Amortized efficiency of a path retrieval data
structure. Theoretical Computer Science 48 (1986), 273 – 281. https:
//doi.org/10.1016/0304-3975(86)90098-8

[7] A. Margara and G. Salvaneschi. 2018. On the Semantics of Distributed
Reactive Programming: The Cost of Consistency. IEEE Transactions
on Software Engineering 44, 7 (July 2018), 689–711. https://doi.org/10.
1109/TSE.2018.2833109

[8] Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben,
and Mira Mezini. 2018. Fault-tolerant Distributed Reactive Program-
ming. In 32nd European Conference on Object-Oriented Programming
(ECOOP 2018) (Leibniz International Proceedings in Informatics (LIPIcs)),
Todd Millstein (Ed.), Vol. 109. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 1:1–1:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2018.1

[9] Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang
De Meuter. 2016. I Now Pronounce You Reactive and Consistent:
Handling Distributed and Replicated State in Reactive Programming.
In Proceedings of the 3rd International Workshop on Reactive and Event-
Based Languages and Systems (REBLS 2016). ACM, New York, NY, USA,
1–8. https://doi.org/10.1145/3001929.3001930

[10] José Proença and Carlos Baquero. 2017. Quality-Aware Reactive Pro-
gramming for the Internet of Things. Springer International Publishing,
Cham, 180–195. https://doi.org/10.1007/978-3-319-68972-2_12

[11] Bob Reynders, Dominique Devriese, and Frank Piessens. 2014. Multi-
Tier Functional Reactive Programming for the Web (Onward! 2014).

ACM, New York, NY, USA, 55–68. https://doi.org/10.1145/2661136.
2661140

[12] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Dis-
tributed System Development with ScalaLoci. In Proceedings of the
2018 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’18). ACM, New York, NY,
USA.

7

https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1016/0304-3975(86)90098-8
https://doi.org/10.1016/0304-3975(86)90098-8
https://doi.org/10.1109/TSE.2018.2833109
https://doi.org/10.1109/TSE.2018.2833109
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.1145/3001929.3001930
https://doi.org/10.1007/978-3-319-68972-2_12
https://doi.org/10.1145/2661136.2661140
https://doi.org/10.1145/2661136.2661140

	Abstract
	1 Introduction
	2 The Impact of Distribution on MV-RP
	2.1 Node Version Histories
	2.2 Stored Serialization Graph

	3 Building Blocks for Distributed MV-RP
	3.1 Lock-Union-Find
	3.2 Mutual Exclusion through Lock-Union-Find

	4 Synergizing MV-RP and SID-UP
	5 Conclusion and Future Work
	Acknowledgments
	References

