
Description for Evaluation
Reproduction
(for	 „Getting	 to	 Know	 You...	 Towards	 a	 Capability	 Model	 for	 Java“	 by	 Ben	 Hermann,	 Michael	 Reif,	
Michael	 Eichberg,	 and	 Mira	 Mezini)	

June	 6,	 2015	

1. Introduction
The purpose of this manual is to guide you through the steps necessary to run our analysis and
reproduce the results in the paper’s evaluation.

As we make assumptions about the folder structure in our software, it is important to check
whether the JAR files of the pure analysis and the evaluation are located in the same folder as the
resource folder. This is the case, when you use the replication package ZIP file provided by us.
When you build from source, please make sure this is the case.

The "resource" folder contains the mapping of native calls to capabilities and the "rt.jar" file of the
unofficial windows build of the OpenJDK 1.7 update 60. (There is no official build for Windows
available)

2. Prerequisites
The analysis and the evaluation tooling is written in Scala and compiles down to Java Bytecode.
Thus, it will run on every machine with a Java 1.8. Runtime installed. We were successfully able
to run it using the Windows 8 and MacOS X 10.10.3 operating systems.

For reproducing the evaluation charts and statistics you may need R (http://www.r-project.org/)
and a standard browser (we recommend using Firefox).

3. How to use the Tool (Quick Software Manual)
If prerequisites are met you can start our tool from the command line interface. Open a console
and navigate to the folder where you placed the jar file and the resource folder.

If you want to run the analysis you have to provide a project that you want to test. Therefore, you
have to specify it via the "-cp" parameter.

To execute the jar and analyze the "xstream" library you type in the following command:

"java -jar PEAKS_JavaCapAnalysis.jar -cp=resources/projects/xstream"

Notice that "xstream" is not a .jar but a folder. If you pass a folder to the analysis every class file
and jar in this folder will be included to the analysis.

If you start the analysis, there will be a menu.

[1] Start capability analysis for libraries.

[2] Sliced capability analysis for projects.
[3] Help.

The normal usage (used in the paper) is the first option. If you only provide a project it will print
capability set to the command line. You could specify other parameters if you are only interested
in some capabilities or if you want get the methods which transitively use certain capabilities. Use
the third option to get an overview over all available parameters.

This is the complete list of all parameters that are available:

[-cp=<Directories or JAR/class files> (If no class path is specified the current folder is used.)]
[-libcp=<Directories or JAR/class files>]
[-lm] - All found methods with capabilities gets listed.
[-CL] - Print all methods with the CLASSLOADING capability.
[-CB] - Print all methods with the CLIPBOARD capability.
[-DB] - Print all methods with the DEBUG capability.
[-FS] - Print all methods with the FS capability.
[-GU] - Print all methods with the GUI capability.
[-IN] - Print all methods with the INPUT capability.
[-OS] - Print all methods with the OS capability.
[-NT] - Print all methods with the NET capability.
[-PR] - Print all methods with the PRINT capability.
[-RF] - Print all methods with the REFLECTION capability.
[-SC] - Print all methods with the SECURITY capability.
[-SD] - Print all methods with the SOUND capability.
[-SY] - Print all methods with the SYSTEM capability.
[-UN] - Print all methods with the UNSAFE capability.

Option 2 from the menu above is a bit more advanced. The analysis will only take care of the
actually used part of the libraries in an application. So far, this works only under the assumption
that all the application dependencies are packaged in the same jar as the application. As this is
the common case for the deployment of most applications it should fit most development
processes nicely.

4. Reproducing the Evaluation
This section describes how to reproduce our evaluation results.

4.1. Requirements
Note that you will need a connection to the Internet as we used the online documentation for
some libraries. If you work without an Internet access the capability set from the keyword scan of
libraries with online documentation will be empty and the results will differ from ours. Please
make sure that the PEAKS_Eval_JavaCapAnalysis JAR is located in the same folder as the "output"
and "resources" folder.

4.2 Reproducing the Evaluation
You can start the evaluation by opening a console. Then navigate to the folder where the jar is
located and execute the following command:

"java -jar PEAKS_Eval_JavaCapAnalysis.jar"

After execution this command, a menu will appear. Press "1" and Enter to trigger the evaluation
process. The evaluation will start now, the output will be written to the output folder. The
evaluation can take up to 6 hours (depending on your computer). Due to heavy parallelization of
the OPAL Framework your computer can be quite busy while running the evaluation.

You will then find the results in the “output” folder in the file “EvaluationResults.csv”. You can
compare them to our results from the “Evaluation” folder.

If the evaluation is done and you may want to recreate the capability distribution chart from the
paper (Figure 4) you have to execute the jar again. Choose the second menu item this time. It
will trigger a transformation of the “EvaluationResults.csv” to another representation needed to
execute the R script. This new file is also located in the “output” folder and is named
“transformedResults.csv”. The R script (peaks.R) is located in the Evaluation folder. If you want
to use it, adapt the working directory to the “output” folder before.

To create the capability matrix (Figure 3), copy the “EvaluationResults.csv” file from the “output”
folder into the “Evaluation” folder and open the capmap.html file with a browser. As Google
Chrome (and other browsers) suppress locally run java scripts from loading files (in this case the
CSV), we suggest Mozilla Firefox or running a small webserver (e.g. with NodeJS).

5. Differences to the Paper
There are no significant differences between the claims made in the paper and the reproducible
package. However, we did update of the Bytecode Analysis Framework from OPAL to a newer
version and noticed that the NET capability was not detected in four projects used in the paper’s
evaluation anymore (i.e. sunflow, sandmark, lucene-query, xstream). We investigated the
differences and found that all on them stem from a more precise call graph construction now
available in OPAL.

Another difference that could influence the evaluation results on the documentation side is the
use online API documentation. (We had to use these because they were not available for
download.) If a documentation is not available or has changed for some reason, the resulting
keywords could be empty or could slightly differ to our evaluation results.

5. Content Overview

Resource Description
PEAKS_JavaCapAnalysis.jar Runnable “.jar” file where the analyses are

implemented. Executable via the command-
line interface.

PEAKS_Eval_JavaCapAnalysis.jar Runnable “.jar” file which triggers the
evaluation. The output is written as csv file to
the output folder.

Folder “src and javadoc” This folder contains several jar files which
include the source files and the Javadoc of our
analysis and the evaluation project. In
addition, it contains the source files jar of our
performed Javadoc keyword scan. The
executable jar of the keyword scan is included
in the lib directory of the Evaluation project
archive.

Folder “resources/capabilities” The content of this folder is our keyword
mapping for the Javadoc keyword scan
(Section 4 of the Paper) and the bootstrap
mapping of the native methods to a capability
set (Section 3.2 of the Paper).

Folder “resources/csvs” This folder contains the meta data for our
projects used to evaluate the analysis.
Essentially it contains the library name, the
library version and the location of the
Javadoc.

Folder “resources/jre_7.0_60” This folder contains the rt.jar of the unofficial
OpenJDK Build for Windows (version 1.7
update 60)1 We have used the 64-Bit version.

Folder “resources/projects” This folder contains the jars and in some cases
the Javadoc of all projects we used for our
evaluation.

Folder “output” Target folder for the evaluation results.
Folder “Evaluation Results” The results of our evaluation.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 	
Windows	 64-‐Bit	 can	 be	 Downloaded	 here:	
	 https://bitbucket.org/alexkasko/openjdk-‐unofficial-‐builds/downloads/openjdk-‐1.7.0-‐u60-‐unofficial-‐
windows-‐amd64-‐installer.zip	
	
Windows	 32-‐Bit	 can	 be	 downloaded	 here:	
	 https://bitbucket.org/alexkasko/openjdk-‐unofficial-‐builds/downloads/openjdk-‐1.7.0-‐u60-‐unofficial-‐
windows-‐i586-‐installer.zip	

6. CSV Data Schemata

File / Description Column Description
resources/capabilities/NativeMethodsRT.csv
Bootstrapping of native methods of the JCL in OpenJDK
7 update 60 (Windows) (Section 3.2 in the paper)

package Package of the
method

class Class name of the
method

method name Name of the
native method

capabilities List of capabilities
associated
(comma
separated)

<unnamed
columns>

Used to identify a
method by its
signature

resources/capabilities/keywords.csv
Mapping from capabilities to keywords (Section 4 in the
Paper)

Capability Capability
Keywords Associated

keywords to the
capability

resources/csvs/EvaluationProjects.csv
List of all evaluation projects and their documentation)

Tool / Library Project name
Version Project version
Link to Javadoc Link to the

documentation
(either local or
remote)

*/EvaluationResults.csv
Result dataset of the evaluation

project Project name
peaks Capability set

derived from code
analysis

docs Capability set
derived from
documentation
analysis

Evaluation/caps.csv
Mapping of capability names to their abbreviation for
capmap.html

full Full name of the
capability

sh Short name of the
capability

