
This is an appendix to the paper

“A Modular Platform for the Development of
Recommendation Systems in Software Engineering”.

by Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini.
The authors are associated with Technische Universität Darmstadt, Germany.

This appendix is published as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright
and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here
electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s
copyright. These works may not be reposted without the explicit permission of the copyright holder.

Identifying Requirements of Static Analyses for
Recommendation Systems in Software Engineering

Sebastian Proksch, Sven Amann, Sarah Nadi, Mira Mezini
Software Technology Group

Technische Universität Darmstadt, Germany

{proksch, amann, nadi, mezini}@st.informatik.tu-darmstadt.de

1 Introduction

A multitude of source-code-based recommendation systems
for software engineering (RSSE) exist. They target a vari-
ety of recommendation tasks using different techniques that
have specific requirements for the input.

To create a more modular platform for structured re-
search of RSSE, it is necessary to find a common ground on
which the requirements of many source-based RSSE are sat-
isfied. As a step in this direction, we elicit the requirements
of 23 existing source-code-based techniques and present the
results in this appendix. We do not limit the survey to a
single line of research, but cover a wide variety of fields.
Therefore, we believe that the requirements of future rec-
ommendation systems would be similar.

2 Identifying Requirements

We review a recent comprehensive survey [22], the RSSE
book [23], and several popular RSSEs to identify require-
ments. In total, we consider 23 techniques.

For each surveyed recommender, we identify the required
input data and find reoccurring analysis challenges, as well
as potential locations to simplify the analysis. Table 1 sum-
marizes the results of this process.

2.1 Surveyed Recommender Systems

We now survey the papers to identify requirements for the
IR and for reusable static analyses. Due to space limita-
tions, we selected a representative set of typical approaches
in RSSEs and do not aim to create a systematic literature
review of the area. We group the surveyed recommenders by
their recommendation task. Our discussion of each paper or
technique focuses on the static analysis. We highlight how
the analysis is performed and which of the above code ele-
ments are necessary. To facilitate readability, we highlight
the code elements in the description of each technique.

Call Recommenders
A call recommender suggests the most likely subsequent
method call(s) or parameter(s) to a developer.

McCarey et al. [11] introduced one of the early call recom-
mendation systems that proposed which methods should be

used in the current class under edit. The underlying static
analysis is based on a simple traversal of the class syntax
tree, in which all invoked methods are captured. Due to
the simplified encoding, they ignore statement order in
their analysis. Additionally, the analysis does not differen-
tiate between different methods in a class. Therefore, it is
not necessary to track the control flow or to normalize
complex expressions.

Bruch et al. [2] also built a call recommendation system
that was later extended by Proksch et al. [20]. The underly-
ing approach in both cases identifies object instances in an
intra-class analysis and extracts all method invocations on
each instance, as well as a description of the surrounding
source code. The original publication considered object
types, the enclosing method, as well as method calls.
Additionally, they use the type system to replace all cap-
tured method references with the first occurrence of the
method signature in the type hierarchy. The extended work
added definition and paramater sites as well as the en-
closing class. The analysis does not preserve order infor-
mation of the captured method invocations. The authors
use an advanced intra-class points-to analysis to iden-
tify all available instances and they implemented a track-
ing approach that follows the control-flow into method
invocations in the same class.

Zhang et al. [25] propose a recommender system that fo-
cuses on parameter call sites. They extract several features
from the structural context that describe the method in-
vocation and its parameters: the called method, the en-
closing method, methods that are called on the re-
ceiver, and methods that are called on the parame-
ter. They do not consider order information and collect all
called methods in a set. Method parameters can be nested
expressionsl however, they skip parameters if the expression
is too complex. Thus, there is an opportunity to improve
their technique by applying normalization of such expres-
sions. Since they do not mention any extended static anal-
ysis in their description, we assume that they heuristically
use variable names to distinguish different target objects.

Heinemann et al. [3] mainly use identifiers to predict
method calls. They extract all identifiers used in the
source code and split names on camel-case humps. Even
though control structures are not part of their model, they
consider control structure keywords in the tokenization.

1

They apply text-mining techniques such as stemming or
removing stop words to unify the collected tokens. Their
static analysis collects all method invocations from the
source code, together with the n preceding tokens.

Amann et al. [1] implemented a tool that learns correct
API usage from interactions of developers in their IDE.
When code completion is triggered in the IDE, features
are extracted from the structural context around the trig-
ger point (type, definition, enclosing statement, expression
type, enclosing method → selected result). The paper does
not perform a points-to analysis, but it implements a heuris-
ticfor the identification of definition sites that is based on
the tracking of parameter names, variable declarations, and
assignments. The enclosing method context is rewritten,
therefore, it is necessary to look-up the info in the type
system.

Raychev et al. [21] solve the task of call recommendation
by mapping it to a text mining problem. They model se-
quences of methods calls as sentences. Missing method
calls are similar to holes in a sentence that can be filled by
calculating likely candidates. They use an intra-procedural
static analysis that extracts all sequences of method invoca-
tions in a method body. They use an underlying points-to
analysis to differentiate between different object instances.

Snippet Recommender
Similar to call recommenders, snippet recommenders pro-
pose likely completions to the developer. However, the re-
sults typically involve multiple statements or method calls
and involve more than just the direct element on which
completion was triggered.

Nguyen et al. [17] developed GrouMiner to find patterns
in API usages from source code repositories. Their ap-
proach is only based on the syntax tree, they do not con-
sider resolved types. The patterns, called Groums, contain
ordered information about method calls, object decla-
rations, and control points. They do not extract informa-
tion about the structural context, but they do make use
of the fields that are declared in the class. The analy-
sis does not use a points-to analysis, but uses a simple
intra-procedural heuristic for the data-flow detection that
is built on variable names. In their follow-up work, Nguyen
et al. [16] propose the GraPacc snippet recommender that
uses these patterns. In addition to the extraction of the
graph-based features from the Groums of the code under
edit, they also tokenize the code to create token-based fea-
tures to be able to support un-parsable code as well. They
only consider keywords and variable names. The underly-
ing models as well as the queries do not contain information
about access modifiers. These are only added later during
active completion tasks in an IDE (as opposed to offline
evaluation).

Prospector (Mandolin et al. [9] and PARSEWEB (Thum-
malapenta et al. [24] are two recommenders that propose
ordered sequences that involve different API types. Both
recommenders suggest call sequences that show the devel-

oper how to get from one API type to another.

Prospector extracts several “elementary” code elements
to build its “signature graph”, the repository that contains
all information that is collected about a framework. They
capture field accesses, static and non-static calls, and
types and store them as basic “jungloids”, composable el-
ements that describe reachable types. By analyzing source
code, they also find examples of meaningful up-casts and
valid down-casts, which they add to their repository. Or-
der is not explicitly encoded in the input data; their syn-
thesis approach naturally generates the right order, because
their Jungloids always contain a tuple that describes how
to get from one type to another, an implicit kind of order.
They perform an inter-procedural and inter-class anal-
ysis that slices the program to find an elementary Jungloid
that creates the target expression. They then track the
control flow into the subsequent method calls.

PARSEWEB works a little different internally. They rely
on examples returned from external code search engines.
Since such examples often do not compile, they simply parse
the snippets into syntax trees and transform them into a
graph-based IR that supports branches but not concrete
control structures. Their approach considers static and
non-static calls and casts. The only type information
used are the imports in a class. Heuristics are used to infer
types in method signatures and method invocations.

The proposed snippets of both approaches contain vari-
able names. However, they are not part of the model;
unique identifiers are generated on demand.

Hindle et al. [4] provided a more general recommender
that is based on natural language processing (NLP) tech-
niques that treat the source code as plain text. While it
does not propose complete snippets of source code, it can
always propose a next token to write. This could be, for ex-
ample, a keyword, which makes it a general recommender
that is able to do more than just call completion. The
technique includes all code elements of the respective lan-
guage, excluding comments. Based on our understanding
of the available description of the work, we assume that
the authors either use a parser for each language and tok-
enize by traversing the AST, or they tokenize based on the
grammer (lexing). In both ways, the text is tokenized ac-
cording to the language specification, which makes it one of
the exceptions in our survey that is solely syntax-based and
which does not depend on a resolved type system. It is
important to note that this design decision does not gener-
alize to other NLP-based systems (e.g., [21]). The nature
of the approach makes a points-to analysis unnecessary.
Normalization and a tracking approach that adds tokens
from private helpers would be applicable and the effect on
the cross-entropy of the language model could be further
evaluated.

Code Search
Code search is quite similar to snippet recommendations.
The difference is that proposals point to existing examples

2

that were observed in repositories or the local workspace,
instead of making probabilistic recommendations. The pro-
posals cannot be directly integrated into the current editor,
but will point to source code that can be used by the devel-
oper to understand a correct usage of the API in question.

Several approaches in this category use interclass track-
ing to follow the control flow in project-specific files. To
be able to this, these approaches require structural context
information to “find” the target in a look up and the type
hierarchy to find implementations of interface methods.

Zhong et al. [26] create MAPO, a code search tool that
mines method sequences from API usage examples. Meth-
ods calls include constructor calls, static and non-static
calls, as well as casts. While they respect the order of
calls and follow control structures to create all possible se-
quences, the control structures are not actually included
in the model. The analysis is intra-procedural and the en-
closing method is not extracted in the model. They ana-
lyze client code, but only include methods in their analysis
that are declared in a reusable framework, i.e., included as
a dependency, and track into all other method calls. They
do this inter-class, as long as the files belong to the same
project.

Holmes et al. [5] present the code search tool Strathcona.
Strathcona extracts certain structural context information
that describes a certain selected piece of code (declaring
type, super type, fields of declaring type, method
declarations in the fragment, as well as types/method-
s/fields referenced in the fragment).

Moreno et al. [15] propose MUSE, a tool that provides de-
velopers examples of how to use a particular method. The
tool requires the source code of the target API as well as
a list of its clients. Whenever a call to one of the target
API public methods is observed in the client code, an intra-
procedural backward slice is created that shows how to
get to this call. The slicing builds a program-dependence-
graph that requires keeping track of method calls, order,
variable names, assignments, and control structures.
Their approach includes all statements and expressions that
are allowed in a method body by the Java language; this
excludes structural information such as class declarations.
When queried, the proposed example contains a ranked list
of (rendered) slices that also contains explaining Javadoc,
if available. We consider Javadoc as a separate artifact to
source code, because while it is maintained in the source
code of the framework, it is usually available as a separate
download since binary distributions do not contain com-
ments anymore. We believe that their approach can benefit
from normalization to get rid of ambiguities. However,
points-to analysis will not necessarily be useful here.

Hummel et al. [6] present CodeConjurer that supports de-
velopers by searching for working code that follows a speci-
fied UML-like syntax. The involved static analysis is based
on the structural context only. The internal representation
of the search engine only contains fully-qualified names
for classes and all methods found in examples, as well as a

link to the location where the file was originally found.
The selection and ranking is completely based only on these
signatures and identifiers. After including a snippet, type
resolution of missing types is achieved by guessing the cor-
rect location, given the fully-qualified name of a class, and
by downloading it to the local workspace. Since the lookup
is very simple here, the technique would not require any of
the transformations or additional analyses we discuss.

Documentation
Programmers often rely on documentation when learning
about an API, but manually created documentation is hard
to maintain and is thus often incomplete or outdated. Auto-
mated documentation generators try to solve this problem
by mining source code repositories. They extract informa-
tion that describe how to use an API and create documen-
tation that can be consulted by developers to better under-
stand a system. The documentation can have very different
forms. We discuss approaches that cover a wide range.

Michail [12] proposed CodeWeb, a tool that can be used
to identify “reuse relationships” in source code. These tu-
ples can be consulted by the developer to learn about the
correct API usage. An example of these rules is “you over-
ride X and you also override Y”, which is based on informa-
tion from the structural context; another example is “you
implement I and override M”, which uses a type-system
look-up to find the required information. The features they
consider are class inheritance, member overrides, and
invocations (including constructors). However, the cap-
tured calls are on a class level though (“existence fact”).
The authors later extend their work to include the com-
plete inheritance hierarchy in their collected facts [13].

Zhong et al. [27] present Java Rule Finder, a tool that
infers rules about a correct usage of a framework directly
from its source code. The rules are prepared in a textual
format and serve as a browsable documentation for devel-
opers. To learn the rules, the authors consider extracted
facts with information about the type hierarchy, invo-
cations, fields, and field accesses. They use these facts
to encode information about the source code in a special
graph-based notation.They did not use control structures
and seem to just collect field read/writes, as well as invoca-
tions. Therefore, points-to analysis and normalization
are not applicable. Tracking, however, seems applicable
and might reduce the number of facts that are extracted
in their approach, because less method relations need to be
stored.

McBurney et al. [10] propose a system that automatically
generates the documentation of an API method. Instead of
analyzing the implemented behavior in the method, they
look at callers of the method and extract descriptive in-
formation from there. Their system builds a call graph
and uses the page rank algorithm to find regularly called
methods. To do this, they need method calls and the en-
closing method declaration. They also identify nouns
and verbs in the tokens by splitting the identifiers found

3

in the signatures, as well as those found in the assigned
variables. We believe that tracking might potentially im-
prove the quality of the page rank output. Normalization
might also increase the preciseness of a statement by sep-
arating unique steps. However, points-to analysis is not
applicable.

Anomaly detection
Anomaly detection approaches learn characteristics of a
typical/correct program. The underlying models are then
used to detect deviations from this established norm. A
very related area is bug detection, in which extended static
analyses are used to prove the definitive existence of a prob-
lem in the code. Due to the similarities of both areas, we
will discuss them together.

Monperrus et al. [14] propose DMMC to detect missing
method calls. They extract object usages that describe how
an object instance is used. They encode the type of the
object, the enclosing method, and all calls on it. They
track the object inter-procedurally, but intra-class. They
implement a points-to analysis. Normalization is not nec-
essary, because their traversal of the syntax tree does not
need to handle nested expressions.

Li et al. [8] present PR-Miner, another detector for miss-
ing method calls. The tool extracts facts from a method
such as the type of variable declarations, variable
names, assignments, and calls and uses a prefixing
strategy to prevent name collisions in different scoping
levels. By applying frequent items mining, the tool ends up
having a list of programming rules. The available source is
then checked for violations of these rules. To remove false
positives, they track method calls in children calls and in
the call-graph of the parent (in which the current loca-
tion is a child). They eliminate the violation report if the
missing call is found there.

Pradel et al. [19] present an approach to build finite-state-
automatons that describe valid protocols for using a spe-
cific type. The approach is based on their own framework
that can be used to mine method sequences [18]. The con-
crete mining approach is exchangeable in this framework,
but the most precise implementation uses a points-to anal-
ysis to identify objects and collects method calls that hap-
pen on or with each object. The approach also makes use
of prior work by Jaspan et al. [7], which provided an ex-
tended points-to analysis to judge whether objects are
contained in other objects, e.g., in collections. Both anal-
yses work intra-procedurally, so there is an opportunity to
apply tracking to increase the size of the sequences. Nor-
malization is not applicable.

2.2 Input Requirements

Our survey reveals that each RSSE requires very specific
information, but many approaches overlap in what they re-
quirements. In order for CART to be useful, it is essential
that our IR encodes this information.

One requirement all approaches have in common is that
they require Method Invocations. For space reasons,
we omit this invariant requirement in Table 1. A char-
acteristic shared by almost all approaches is that they
need Resolved Types [1, 2, 4, 6, 9, 10, 12–15, 20, 26, 27].
One approach uses smart heuristics to infer types [24],
which would be unnecessary if the types were resolved.
Some of the remaining RSSEs could potentially benefit
from resolved types [4, 16, 17, 24]. Some approaches ad-
ditionally require information about the Type Hierar-
chy [1,2,5,8,10,12–14,20,26,27], because they, for example,
look up information from super classes or implemented in-
terfaces.

The majority of the surveyed approaches make use of
the Structural Context, such as the signatures of de-
clared members. Many approaches use it to group invo-
cations by the enclosing context. Four approaches group
per class [4, 11–13], while others use the enclosing method
for grouping [1, 2, 5, 6, 8–10,14,16,17,20,24–27]. Even text-
based approaches such as that used by Hindle et al. [4] could
include structural context information in their model, i.e.,
they could consider complete signatures of methods instead
of tokenizing it like the rest of the code.

The structural context is also used by some approaches to
identify the reusable API of a type, i.e., the methods that
are not project-specific. Zhong et al. [26] call these methods
“third party API methods”. While it is possible to use the
type hierarchy to identify methods in a class that override
a definition from a library or framework, the intermediate
representation should also differentiate method declarations
that are reusable from project-specific helper methods, e.g.,
public or protected methods.

Many approaches consider the Invocation Order in ad-
dition to Method Invocations. Notably, these are all
RSSEs that deliver code snippets [4, 9, 15–17, 24, 26], be-
cause they need the information to ensure their proposals
adhere to correct order. However, other approaches exploit
this information as well [3, 15, 19, 21, 26, 27], e.g., to make
proposals based on preceding invocations.

Many approaches consider Control Structures. No-
tably, these are again mainly RSSEs delivering code snip-
pets [4, 15–17, 24, 26], which include control structures in
their proposals. Others exploit this information to describe
the context of invocations [1, 3]. Several other approaches
require this information for points-to analysis [2,14,19–21].

Two approaches use Variable Names to predict call pa-
rameters [25] or the methods to invoke [3]. Many others use
both Variable Names and Assignments to analyze data
flow [2, 4, 8, 10, 14–17, 19–21, 24, 27]. Some approaches also
consider Casts when analyzing how instances of certain
types can be obtained [9, 15,24,26].

Other requirements are used only by a single approach
each: First, one NLP-based RSSE uses Syntax Tokens [4],
such as braces and semicolons, because it tokenizes the en-
tire source code. Note that the technique does not con-
ceptually depend on these tokens, since it treats all tokens

4

Table 1: Comparison of the surveyed papers. We mark if
the respective dimension is used (), applicable but not
used (#), or not fully utilized (G#). A cell is empty if the
dimension is not applicable to the approach.

Input Requirements Transform.
& Analyses

R
es
o
lv
ed

T
y
p
es

T
y
p
e
H
ie
ra
rc
h
y

S
tr
u
ct
.
C
o
n
te
x
t

In
v
o
ca
ti
o
n
O
rd
er

C
tr
l.

S
tr
u
ct
u
re
s

V
a
ri
a
b
le
s/
F
ie
ld
s

A
ss
ig
n
m
en
ts

C
a
st
s

O
th
er

T
ra
ck
in
g

P
o
in
ts
-t
o

N
es
te
d
E
x
p
re
ss
.

S
li
ci
n
g

Call Completion

Bruch et al. [2]
Proksch et al. [20]
Raychev et al. [21] #
McCarey et al. [11]
Heinemann et al. [3] # #
Amann et al. [1] # G#
Zhang et al. [25] # G# #

Snippet Recommender

Nguyen et al. [17] # # G# #
Nguyen et al. [16] # # G# #
Mandelin et al. [9] G#
Thummalap. et al. [24] G#
Hindle et al. [4] # G# # #

Code Search

Zhong et al. [26]
Holmes et al. [5] #
Moreno et al. [15] # #
Hummel et al. [6]

Documentation

Michail [12,13] #
Zhong et al. [27] #
McBurney et al. [10] # #

Anomaly Detection

Monperrus et al. [14]
Li et al. [8]
Pradel et al. [19] #

the same. Second, one approach requires JavaDoc Com-
ments [15] from frameworks to enrich their proposed snip-
pets with documentation. Third, one approach Links to
Source [6] in a public repository, to be able to fetch the
complete source code and additional files from the original
repository.

2.3 Analysis Challenges and Tasks

In our survey we realized that all RSSEs that consider con-
trol or data flow in their analysis need to resolve the evalua-
tion order of sub expressions in Nested Expressions, like
nested calls m1(m2()) or chained calls o.m1().m2(). This
task is often intertwined with the RSSE’s specific analysis,
increasing its complexity and decreasing its maintainability.
We can mitigate this, if we resolve the actual order once,
in a normalization step, and implement the analyses on the

normalized information.
Furthermore, many approaches reimplement static analy-

ses: Several approaches employ Points-to Analysis [2,14,
19–21] to distinguish unique object instances in their ap-
proach and some implement heuristics to achieve a similar
goal [1, 16, 17, 25]. Others apply a Tracking analysis to
follow the control flow into invoked methods [2, 8, 9, 14, 20,
24,26]. Others do not apply such a technique, even though
they might benefit from it [1,3–5,10,12,13,15–17,21,25,27].
Two approaches use Slicing to extract relevant parts of
code snippets [9,15]. Tool smiths could save much effort, if
they could reuse a respective analysis.

2.4 Future Requirements

We identify further requirements that are, to the best of
our knowledge, currently not required by any recommender
system, but might be of interest to future work: A widely
unexplored dimension of RSSEs is the Framework Ver-
sion some input source code depends on. Since APIs might
change between versions, this information should be con-
sidered when applying RSSEs in practice. Generic Type
Parameters, as supported by Java and C#, are another
potentially beneficial information for RSSEs. Finally, most
surveyed approaches use source code from repositories as
their input. The only exception being Amann et al. [1],
who capture Source Code under Edit in the IDE. To
support this approach, the static analyses need to handle
potentially non-compiling code and the input data should
capture both incomplete tokens and the cursor location.

3 Conclusion

In this appendix, we conducted a survey of 23 RSSE. We
introduced each approach and focused on the static anal-
ysis to identify requirements for the input. We abstracted
the concrete requirements, introduced several high-level re-
quirements, and categorized for each paper if the require-
ments are applicable.

We found that the static analyses are very different and
that they range from a simple traversal of the abstract syn-
tax tree to sophisticated analyses of data flow and control
flow properties of a program. The identified requirements
can guide researchers that create unified tools or platforms
for the development of RSSE.

References

[1] S. Amann, S. Proksch, and M. Mezini. Method-call
Recommendations from Implicit Developer Feedback.
In Proceedings of the 1st International Workshop on
CrowdSourcing in Software Engineering. ACM, 2014.

[2] M. Bruch, M. Monperrus, and M. Mezini. Learning
from examples to improve code completion systems.
In Proc. of ESEC/FSE. ACM, 2009.

5

[3] L. Heinemann, V. Bauer, M. Herrmannsdoerfer, and
B. Hummel. Identifier-based context-dependent API
Method Recommendation. In Software Maintenance
and Reengineering (CSMR), 2012 16th European Con-
ference on. IEEE, 2012.

[4] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. De-
vanbu. On the naturalness of software. In Software
Engineering (ICSE), 2012 34th International Confer-
ence on, pages 837–847. IEEE, 2012.

[5] R. Holmes, R. J. Walker, and G. C. Murphy. Approx-
imate structural context matching: An approach to
recommend relevant examples. Software Engineering,
IEEE Transactions on, 32(12):952–970, 2006.

[6] O. Hummel, W. Janjic, and C. Atkinson. Code con-
jurer: Pulling reusable software out of thin air. Soft-
ware, IEEE, 25(5):45–52, 2008.

[7] C. Jaspan and J. Aldrich. Checking framework inter-
actions with relationships. Springer, 2009.

[8] Z. Li and Y. Zhou. Pr-miner: automatically extract-
ing implicit programming rules and detecting viola-
tions in large software code. In Proceedings of the 10th
European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, 2005.

[9] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jun-
gloid mining: helping to navigate the api jungle. ACM
SIGPLAN Notices, 40(6):48–61, 2005.

[10] P. W. McBurney and C. McMillan. Automatic doc-
umentation generation via source code summarization
of method context. In Proceedings of the 22Nd Interna-
tional Conference on Program Comprehension. ACM,
2014.

[11] F. Mccarey, M. Ó. Cinnéide, and N. Kushmerick. Ras-
cal: A recommender agent for agile reuse. Artificial
Intelligence Review, 24(3-4):253–276, 2005.

[12] A. Michail. Data mining library reuse patterns in user-
selected applications. In Automated Software Engineer-
ing, 1999. 14th IEEE International Conference on.,
pages 24–33. IEEE, 1999.

[13] A. Michail. Data mining library reuse patterns us-
ing generalized association rules. In Proceedings of the
22nd international conference on Software engineering,
pages 167–176. ACM, 2000.

[14] M. Monperrus, M. Bruch, and M. Mezini. De-
tecting missing method calls in object-oriented soft-
ware. In ECOOP 2010–Object-Oriented Programming.
Springer, 2010.

[15] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and
A. Marcus. How can i use this method? In Proceed-
ings of the 37th International Conference on Software
Engineering. IEEE, 2015.

[16] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tam-
rawi, H. V. Nguyen, J. Al-Kofahi, and T. N. Nguyen.

Graph-based pattern-oriented, context-sensitive source
code completion. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, pages 69–
79. IEEE Press, 2012.

[17] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-
Kofahi, and T. N. Nguyen. Graph-based mining of mul-
tiple object usage patterns. In Proceedings of the the
7th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 383–
392. ACM, 2009.

[18] M. Pradel, P. Bichsel, and T. R. Gross. A framework
for the evaluation of specification miners based on fi-
nite state machines. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1–10.
IEEE, 2010.

[19] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross.
Statically checking api protocol conformance with
mined multi-object specifications. In Proceedings of
the 34th International Conference on Software Engi-
neering, pages 925–935. IEEE Press, 2012.

[20] S. Proksch, J. Lerch, and M. Mezini. Intelligent Code
Completion with Bayesian Networks. ACM Transac-
tions on Software Engineering and Methodology, 2015.

[21] V. Raychev, M. Vechev, and E. Yahav. Code Comple-
tion with Statistical Language Models. In Proceedings
of the 35th Conference on Programming Language De-
sign and Implementation. ACM, 2014.

[22] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini,
and T. Ratchford. Automated api property inference
techniques. Software Engineering, IEEE Transactions
on, 39(5):613–637, 2013.

[23] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zim-
mermann. Recommendation Systems in Software En-
gineering. Springer, 2014.

[24] S. Thummalapenta and T. Xie. Parseweb: a program-
mer assistant for reusing open source code on the web.
In Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineer-
ing, pages 204–213. ACM, 2007.

[25] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang,
J. Zhao, and P. Ou. Automatic parameter recommen-
dation for practical api usage. In Proceedings of the
34th International Conference on Software Engineer-
ing, pages 826–836. IEEE Press, 2012.

[26] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
Mapo: Mining and recommending api usage patterns.
In ECOOP 2009–Object-Oriented Programming, pages
318–343. Springer, 2009.

[27] H. Zhong, L. Zhang, and H. Mei. Inferring specifi-
cations of object oriented apis from api source code.
In Software Engineering Conference, 2008. APSEC’08.
15th Asia-Pacific. IEEE, 2008.

6

