
Talk Proposal: Agreement without Coordination
Revisiting Consensus from a Local-First Perspective

Julian Haas
Technische Universität Darmstadt

Germany

By now, CRDTs [14, 15] have become the de-facto stan-
dard for data synchronization in local-first software. Sev-
eral production-ready libraries of CRDTs exist [2, 10], and
various CRDT-based data synchronization platforms are un-
der active development. CRDTs provide eventual consistency
by restricting their updates to operations that ensure con-
vergence. At the same time, it is widely acknowledged that
eventual consistency is not sufficient for certain application
semantics. Some application invariants are too “strong” to be
maintained under eventual consistency because they require
agreement between all participants, which is traditionally
acquired via consensus/coordination protocols or by desig-
nating a single source of truth such as a centralized server.
This gave birth to a variety of mixed-consistency systems
[1, 3, 4, 6, 8, 11–13, 16] which combine eventual-consistency
with stronger-consistency guarantees for some parts of the
application. Unfortunately, very few of those systems are
suitable for a local-first setting as they often cannot easily
handle devices which become unreachable for extended pe-
riods of time.

In this talk, we revisit the consensus problem from a local-
first perspective and investigate new ways of expressing
consensus protocols that work well in a decentralized set-
ting. Our investigation is motivated by an epistemological
view of knowledge in distributed systems as proposed by
Halpern and Moses [7]: They distinguish distributed knowl-
edge which is “distributed among the members of the group”,
and common knowledge which are facts that are “publicly
known”. Rephrasing this as a consensus problem, we can say
that consensus on a query has been reached once the answer
becomes common knowledge in the system. Interestingly,
common knowledge can often be established without direct
coordination or even direct communication: By simply ob-
serving a series of messages on the network, participants
can learn facts that are known to the other participants and
thus these facts can transition from distributed knowledge
to common knowledge.

We argue that CRDTs, a common building block in local-
first systems, already present an elegant way for reasoning
about accumulating knowledge in a system through their
monotonic semi-lattice properties. CRDTs do not rely on ex-
plicit coordination between participants; instead, the current
state of the data type is determined by observing a series of
updates that are propagated through the network. In certain
cases, this can be used to make decisions that may seem like

they would require explicit coordination. For example, in the
classic two-phase set CRDT [15], elements can be added and
removed, but once they have been removed, they can never
be added again. In other words, once a participant observes a
removal, it can deduce that this particular element will never
be in the set again. When all participants have observed this
update, the fact that the element has been removed becomes
common knowledge, and we have reached agreement without
explicit coordination. Similarly, participants of a consensus
protocol can deduce that consensus has been reached by
only observing certain messages over time. From a data type
perspective, this allows us to treat consensus as a write-once
register that is either in an undefined initial state or has a
single value that can never change again [9].

Throughout the talk, we will demonstrate how to use the
monotonic properties of CRDTs in a novel strategy for build-
ing consensus protocols which allows expressing existing
protocols through the composition of simple replicated data
types. We will go through several examples and highlight
challenges and opportunities of such a programming model.
Additionally, we will examine the applicability of existing
protocols to the local-first setting: What are the trade-offs
regarding offline periods, network size, and delay-tolerance?
Additional details about the proposed programming model
can be found in a work-in-progress tech report [5].

References
[1] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and David Maier.

2014. Blazes: Coordination Analysis for Distributed Programs. In 2014
IEEE 30th International Conference on Data Engineering. IEEE, 52–63.
https://doi.org/10.1109/ICDE.2014.6816639

[2] Automerge contributors. 2024. Automerge: Build Local-First Software
(Website). https://automerge.org/ (Accessed on 2024-06-24).

[3] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonza-
lez Boix. 2021. ECROs: Building Global Scale Systems from Sequential
Code. Proceedings of the ACM on Programming Languages 5, OOPSLA
(Oct. 2021), 107:1–107:30. https://doi.org/10.1145/3485484

[4] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning
About Consistency Choices in Distributed Systems. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. ACM, New York, NY, USA, 371–384.
https://doi.org/10.1145/2837614.2837625

[5] Julian Haas, Ragnar Mogk, Annette Bieniusa, and Mira Mezini. 2024.
Distributed Locking as a Data Type. https://doi.org/10.48550/arXiv.
2405.15578 arXiv:2405.15578 [cs]

[6] Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and
Mira Mezini. 2024. LoRe: A Programming Model for Verifiably Safe

https://orcid.org/0000-0001-9959-5099
https://doi.org/10.1109/ICDE.2014.6816639
https://automerge.org/
https://doi.org/10.1145/3485484
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.48550/arXiv.2405.15578
https://doi.org/10.48550/arXiv.2405.15578
https://arxiv.org/abs/2405.15578


Julian Haas

Local-first Software. ACM Transactions on Programming Languages
and Systems 46, 1 (Jan. 2024), 2:1–2:26. https://doi.org/10.1145/3633769

[7] Joseph Y. Halpern and Yoram Moses. 1990. Knowledge and Common
Knowledge in a Distributed Environment. J. ACM 37, 3 (July 1990),
549–587. https://doi.org/10.1145/79147.79161

[8] Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: Replication
Coordination Analysis and Synthesis. Proceedings of the ACM on
Programming Languages 3, POPL (Jan. 2019), 74:1–74:32. https://doi.
org/10.1145/3290387

[9] Heidi Howard and Richard Mortier. 2019. A Generalised Solution to
Distributed Consensus. https://doi.org/10.48550/arXiv.1902.06776
arXiv:1902.06776 [cs]

[10] Kevin Jahns. 2024. Yjs: Modular Building Blocks for Building Collab-
orative Applications like Google Docs and Figma (Website). https:
//docs.yjs.dev/ (Accessed on 2024-06-24).

[11] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro
Margara, and Guido Salvaneschi. 2020. Rethinking Safe Consistency
in Distributed Object-Oriented Programming. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 188:1–188:30. https:
//doi.org/10.1145/3428256

[12] Nicholas V Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and
Pavol Černý. 2019. Sequential Programming for Replicated Data Stores.
Proceedings of the ACM on Programming Languages 3, ICFP (July 2019),
106:1–106:28. https://doi.org/10.1145/3341710

[13] Mae Milano, Rolph Recto, Tom Magrino, and Andrew C Myers. 2019.
A Tour of Gallifrey, a Language for Geodistributed Programming. In
3rd Summit on Advances in Programming Languages (SNAPL 2019),
Vol. 136. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 11:1–11:19. https://doi.org/10.4230/LIPIcs.SNAPL.2019.11

[14] Nuno Preguiça. 2018. Conflict-Free Replicated Data Types: An
Overview. ArXiv (June 2018). https://doi.org/10.48550/ARXIV.1806.
10254

[15] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A Comprehensive Study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[16] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2020. Com-
bining State- and Event-Based Semantics to Verify Highly Available
Programs. In Formal Aspects of Component Software. Springer Interna-
tional Publishing, Cham, 213–232. https://doi.org/10.1007/978-3-030-
40914-2_11

https://doi.org/10.1145/3633769
https://doi.org/10.1145/79147.79161
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.48550/arXiv.1902.06776
https://arxiv.org/abs/1902.06776
https://docs.yjs.dev/
https://docs.yjs.dev/
https://doi.org/10.1145/3428256
https://doi.org/10.1145/3428256
https://doi.org/10.1145/3341710
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.48550/ARXIV.1806.10254
https://doi.org/10.48550/ARXIV.1806.10254
https://hal.inria.fr/inria-00555588
https://doi.org/10.1007/978-3-030-40914-2_11
https://doi.org/10.1007/978-3-030-40914-2_11

	References

