
Real World
Local-First Deployments

An Experience Report
Borja de Régil

Sr. Engineer @ Ditto

A local-first app wishlist?

Social Media icons illustration by Bastian Riccardi on Unsplash

https://unsplash.com/@shutter_speed_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-group-of-colorful-dice-PSCxb6qpiFg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Office illustration by Igor Omilaev on Unsplash

Expanding the local-first vision

Remember your flight here?
One of the last places without ubiquitous connectivity

Need to support commerce

(bought anything recently?)

Plenty of logistics occurring behind the scenes of passengers 
(checklists, manage on-flight stock, flight attendant collaboration)

Restaurants have changed
Multiple points of order and updating displays

(drive-through, self-serve kiosks, waiter tablets, menus,
kitchen displays & printers)

All connected by brittle networks, all needed
to be up for smooth operation

P2P connectivity is key

Why are all these devices
talking to the cloud?

Why don't we see more local-first
software?

Using
Local-First
software

Building
 Local-First

software

Expectations of users
Most interaction happens on hand-held devices

Usage "on the go", data always available

Cross device, your data should move seamlessly

Expectations of users
Most interaction happens on hand-held devices

Usage "on the go", data always available

Cross device, your data should move seamlessly

Challenges for developers
Multiple transport protocols. Which to use & how to combine?

Discovery. How do you form a mesh of devices?

Replication. How do you move data around?

Conflicts. How do you reconcile cross-device conflicts?

Auth & Security. Who has access to your data?

Usability. How do you expose all of this to end developers?

Challenges for developers
Multiple transport protocols. Which to use & how to combine?

Discovery. How do you form a mesh of devices?

Replication. How do you move data around?

Conflicts. How do you reconcile cross-device conflicts?

Auth & Security. Who has access to your data?

Usability. How do you expose all of this to end developers?

🫣😱
😭

Let's make local-first useful for everyone

Topics

Ditto: making it work (choices, choices)

Deploying local-first: lessons learned

Onwards: challenges ahead

An SDK that allows you to write
apps supporting P2P and cloud 

Automatically connects devices
in ad-hoc mesh networks

Data moves P2P, but the overall
ecosystem feels traditional

Puts tested local-first research
into practice

Rust Core

Ditto FFI

Bluetooth
Platform
specific

IO
Rust

Other
C

SDK API

Tackling the challenges

Multiple transport protocols

Discovery
Replication

Conflicts

Auth & Security

Usability

Tackling the challenges

Multiple transport protocols

Discovery

Replication

Conflicts

Auth & Security

Usability

Usability: the mesh is a database

ditto.sync.register_subscription("""
SELECT * FROM cars
 WHERE color = 'blue'

""")

ditto.store.execute("""
 INSERT INTO cars DOCUMENTS({
 '_id': 'Honda',
 'color': 'blue',
 ...
 })
""")

Conflicts: everything is a ∆-CRDT

Albert van der Linde, João Leitão, and Nuno Preguiça. Δ-CRDTs: making δ-CRDTs delta-based

Every row in the database is a CRDT map

Multiple types: maps, registers and counters

Diffs (deltas) prevent the state accumulation problem

(but require more metadata per document)

An inside look at Ditto's Delta State CRDTs: https://ditto.live/blog/dittos-delta-state-crdts

https://ditto.live/blog/dittos-delta-state-crdts

Diffs represent the minimal set of changes to be exchanged

Replication: subscription-based sync

Devices replicate only what they're interested in

A mesh forms around overlapping subscriptions

Push-based partial replication allows efficient bandwidth and disk
usage (polling is inefficient, flooding wastes network resources)

ditto.sync.register_subscription("""
SELECT * FROM cars
 WHERE color = 'blue'

""")

Replication: Attachments

Attachments allow to move binary blobs through the mesh

Tokens can be shared through normal replication

Transfers can be stopped, resumed and cancelled

// Peer A
token = ditto.store.new_attachment(data)

// Peer B
ditto.store.fetch_attachment(token)

Auth & Security

Bring your own identity provider and role-based permission system

Device fleets tend to have centralized control: devices must
authenticate online before going offline, and re-authenticate
periodically

Offline auth possible, but requires manual work

Permissions are data-oriented: what am I allowed to read and write?

Mesh devices will only talk to devices with matching roots of trust

Deploying local-first: lessons learned

Iterating safely and quickly in an open
system

Your degree of control is limited

Software updates going through the App store take time and can
get rejected

Deployments will run multiple versions most of the time

Iterating safely and quickly in an open
system

Changes in behavior require cross-version coordination

Users can be in control, but at some point you will need to make
the new thing the default

Epidemic P2P protocol to spread changes through the mesh

Understanding your data model
(knowing how much to abstract away)

Tried to emulate JSON too much, after document databases

The default choices you make to model JSON will haunt you 
(ask me about using RGAs for arrays)

Basing your system on JSON means finding ways to:

- Map between JSON and internal CRDT representation

- Let users specify type definitions, we went through a few

- Ties your query language to a JSON structure, hard to extend

Understanding your data model
(knowing how much to abstract away)

Almost everyone understands last-write-wins semantics

Documents end up being "flat" most of the time

A relational model brings you several advantages:

- Everyone is familiar with SQL

- Better support for type definitions, schemas* and operations

- Lets users express more complex queries

Deletes are hard
(especially in a subscription-based world)

ditto.sync.register_subscription("""
SELECT * FROM cars
 WHERE color = 'blue'

""")

Deletes are hard
(and some kinds of deletes are harder)

CRDTs offer different possibilities for removal

Conflict resolution for deletes can be confusing

A remove-wins world means you will be forever looking for the device
that fell behind the couch (which is overwriting your other data)

An add-wins world brings you problems of causal vs temporal
conflicts.

Everyone understands the soft-delete pattern. Lean on it.

Observability & Introspection
Network managers want know about devices in the field

- Mesh network status

- Last time a device was online

- Device names and unique identifiers

- Device logs

- Custom metadata

Observability & Introspection
Device operators want to know about local status

- Who is this device connected to (presence viewer)

- Online sync status

- Local data browser

- Disk usage reporting

- Advanced configuration via configuration language

Devices don't start from scratch
Need to quickly import external sources of data

Many devices will probably need the same set of data on startup

Initial import needs to avoid conflicts, otherwise you risk a flood of
replication and needless reconciliation

Ditto performs initial pre-load with a content-derived causal context
to prevent conflicts

Devices have small disks and
data accumulation is real
Devices dynamically change which partial data-set they're
interested in

Need to decouple deleting everywhere (tombstone) vs deleting
locally (evict)

Evicting is forgetting, so be sure to respect causal order

Support ways to determine when data is replicated offsite

Onwards: challenges ahead

Beyond the mesh

Schema support and evolution

Offline auth, trust, delegation

Dealing with erratic or buggy peers

Flexible reconciliation policies

Metadata growth in large meshes

Challenges ahead

Beyond the mesh

Schema support and evolution

Offline auth, trust, delegation

Dealing with erratic or buggy peers

Flexible reconciliation policies

Metadata growth in large meshes

Challenges ahead

Beyond the mesh
Pre-existing systems already have a data store

Mesh devices need to import and export data to the outside world

Metadata and provenance is lost when data leaves the mesh

Track mutations occurring outside of our conflict-free world

Managing and evolving schemas

Are schemas a first-class concept?

How do peers communicate about schemas?

How to safely change and evolve them?

Offline auth, trust, delegation

Need permission systems that evolve with time

Auth delegation and revocation in a fully offline manner

Can you build a fully offline Slack clone? And make it encrypted?

Dealing with buggy peers

You will introduce a bug at some point

Are your bugs viral? Do they infect data across the mesh?

Revocation, but also reversible data

Imagine a world where all software is
Local-First

Thank you!
Borja de Régil

 
borja@ditto.live

mailto:borja@ditto.live

Chat offline at PLF!

